Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^2-2x-1\right)^2\)
\(=\left[x^2+\left(-2x\right)+\left(-1\right)\right]\left[x^2+\left(-2\right)+\left(-1\right)\right]\)
\(=\left(x^2\right)\left(x^2\right)+\left(x^2\right)\left(-2x\right)+\left(x^2\right)\left(-1\right)+\left(-2x\right)\left(x^2\right)+\left(-2x\right)\)
\(=x^4-2x^3-x^2-2x^3+4x^3+2x-x^2+2x+1\)
\(=x^4-4x^3+2x^2+4x+1\)
Mk ko chắc
a) \(\left(x^2-2x-1\right)^2\)
\(=\left(x^2-2x\right)^2-2\left(x^2+2x\right)-1\)
\(=x^4+4x^3-2x^2+4x^2+4x+1\)
\(=x^4+4x^3-2x^2+4x+1\)
b) Tương tự
2:
-8x^6-12x^4y-6x^2y^2-y^3
=-(8x^6+12x^4y+6x^2y^2+y^3)
=-(2x^2+y)^3
3:
=(1/3)^2-(2x-y)^2
=(1/3-2x+y)(1/3+2x-y)
`a,-x^3/8 + 3/(4x^2) - 3/(2x) +1`
`=-(x^3/8 - 3/(4x^2) + 3/(2x) - 1)`
`=-(x/2 - 1)^3`
`b,x^6 - 3/(2x^{4} y) + 3/(4x^{2}y^{2}) - 1/(8y^{3})`
`=(x^3 - 1/(2y))^{3}`
\(\left(\dfrac{1}{2}+x\right)^2=\dfrac{1}{4}+x+x^2\)
\(\left(2x+1\right)^2=4x^2+4x+1\)
1. (1/2 +x)2= (1/2)2 + x +x2 = 1/4 +x +x2
(2x+1)2 = 4x2 +4x +1
chúc bạn học tốt
\(x^2+2y^2+2xy-2y+2\)
\(=\left(\frac{x^2}{2}+2xy+2y^2\right)+\left(\frac{x^2}{2}-2x+2\right)\)
\(=\left(\frac{x}{\sqrt{2}}+\sqrt{2}y\right)^2+\left(\frac{x}{\sqrt{2}}-\sqrt{2}\right)^2\)
\(1,\\ a,=\left(x+2\right)\left(x^2-2x+4\right)\\ b,=\left(x-4\right)\left(x^2+8x+16\right)\\ c,=\left(3x+1\right)\left(9x^2-3x+1\right)\\ d,=\left(4m-3\right)\left(16m^2+12m+9\right)\\ 2,\\ a,=x^3+125\\ b,=1-x^3\\ c,=y^3+27t^3\)
a)
\(=\left(x+2\right)\left(x^2-2x+4\right)\)
b)
\(=\left(x-4\right)\left(x^2+4x+16\right)\)
c)=\(\left(3x+1\right)\left(9x^2-3x+1\right)\)
d)
=\(\left(4m-3\right)\left(16m^2+12m+9\right)\)
a) Ta có: \(\left(x^2+9x+18\right)^2+2\left(x^2+9x\right)+37\)
\(=\left(x^2+9x+18\right)^2+2\cdot\left(x^2+9x+18\right)-36+37\)
\(=\left(x^2+9x+19\right)^2\)
b) Ta có: \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+2\left(x+1\right)\left(y+1\right)\)
\(=\left(x^2+2x+2+y^2+2y\right)^2\)
\(\left(x^2+2x-1\right)^2\)
\(=\left(x^2+2x\right)^2-2\left(x^2+2x\right)+1\)
\(=x^4+4x^3-2x^2+4x^2+4x+1\)
\(=x^4+4x^3+2x^2+4x+1\)