Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để hai đường thẳng song song nhau thì:
\(\left\{\begin{matrix} k+3=4\\ m+1\neq 3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m\neq 1\end{matrix}\right.\)
Để hai đt cắt nhau thì: \(\left\{\begin{matrix} k+3\neq 4\\ m\in\mathbb{R}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k\neq 1\\ m\in\mathbb{R}\end{matrix}\right.\)
Để hai đt trùng nhau thì: \(\left\{\begin{matrix} k+3=4\\ m+1=3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m=1\end{matrix}\right.\)
Để hai đt cắt nhau tại 1 điểm trên trục tung thì:
PT hoành độ giao điểm $(k+3)x+m+1=4x+3-m$ nhận $x=0$ là nghiệm
$\Leftrightarrow x(k-1)+(2m-2)=0$ nhận $x=0$ là nghiệm
$\Leftrightarrow 2m-2=0$
$\Leftrightarrow m=1$
Vậy $m=1$ và $k\in\mathbb{R}$ bất kỳ.
Để 2 đt vuông góc thì $(k+3).4=-1$ và $m$ bất kỳ
$\Leftrightarrow k=\frac{-13}{4}$ và $m$ bất kỳ.
a) Thay y=0 vào y=2x-1, ta được:
2x-1=0
hay \(x=\dfrac{1}{2}\)
Thay \(x=\dfrac{1}{2}\) và y=0 vào y=3x+m, ta được:
\(m+\dfrac{3}{2}=0\)
hay \(m=-\dfrac{3}{2}\)
Lời giải:
PT hoành độ giao điểm:
$-3x+6-(2,5x-2m+1)=0$
$\Leftrightarrow -5,5x+5+2m=0$
$\Leftrightarrow x=\frac{5+2m}{5,5}$
Tung độ giao điểm:
$y=-3x+6=\frac{-3(5+2m)}{5,5}+6$
Để 2 đths trên cắt nhau tại 1 điểm trên trục hoành thì $y=\frac{-3(5+2m)}{5,5}+6=0$
$\Leftrightarrow m=3$
Lời giải:
Để 2 đường thẳng cắt nhau tại 1 điểm nằm trên trục hoành thì tọa độ giao điểm của 2 ĐT có dạng $(x_0,0)$
\(\left\{\begin{matrix} 0=-3x_0+6\\ 0=5252x_0-2m+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_0=2\\ 2m=5252x_0+1\end{matrix}\right.\)
\(\Rightarrow m=\frac{5252.2+1}{2}=5252,5\)
A
Chọn A