Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ ΔABC
Vẽ đường thẳng d1 đi qua B và vuông góc với AB
Vẽ đường thẳng d2 đi qua C và song song với AB
d1 và d2 cắt nhau tại D.
Câu hỏi: d1 có vuông góc với d2 không? Tại sao?
Xét tam giác AEB và tam giác CED có
góc BAE = góc DCE = 90 độ
BE = CE
góc BEA = góc DEC (đối đỉnh)
=> tam giác AEB = tam giác CED (ch-gn)
b) Có tam giác AEB = tam giác CED => AB = CD
c) Xét tam giác ABC và tam giác CDA có
góc BAC = góc DCA = 90 độ
AB = CD
AC chung
=> tam giác ABC = tam giác CDA (c.g.c)
d) ta có tam giác ABC = tam giác CDA => góc BCA = góc DAC (2 góc tương ứng )
mà 2 góc ở vị trí so le trong => AD // BC
a) Xét ΔEAB vuông tại A và ΔECD vuông tại C có
EB=ED(gt)
\(\widehat{AEB}=\widehat{CED}\)(hai góc đối đỉnh)
Do đó: ΔEAB=ΔECD(cạnh huyền-góc nhọn)
- Thứ tự sắp xếp là 5, 1, 2, 4, 3
Tam giác AMB và tam giác EMC có
MB = MC (gt)
MA = ME (gt)
Do đó ΔAMB = ΔEMC (c.g.c)
Bài 4:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{21^2+28^2}=35\left(cm\right)\)
Bài 5:
\(OM=\sqrt{55^2-44^2}=33\left(cm\right)\)
Đề toán:
Vẽ tam giác ABC đều
Vẽ tam giác ABD vuông cân tại B sao cho D và C nằm trên hai nửa mặt phẳng bờ chứa đường thẳng AB.
Vẽ tam giác ACE vuông cân tại C sao cho E và B nằm trên hai nửa mặt phẳng đối có bờ chứa đường thẳng AC
Đo ∠DAE =150o
Chứng minh:
- Vẽ tam giác ABC vuông cân tại A
- Vẽ tam giác đều ABD sao cho D và C nằm trên 2 nửa mặt phẳng có bờ chứa đường thẳng AB.
- Vẽ tam giác vuông cân ADE sao cho E và B nằm trên 2 nửa mặt phẳng đối bờ chứa đường thẳng AD.
Chứng minh tam giác ACE là tam giác cân.