Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔABD và ΔBAC có
BA chung
BD=AC
AD=BC
Do đó: ΔABD=ΔBAC
c: ta có: EA+EC=AC
EB+ED=BD
mà AC=BD
và EA=EB
nên EC=ED
có : \(AH\perp BD\)
\(CK\perp DB\) =>AH//CK
Có : tứ giác ABCD là hình bình hành :
`=>` AB//CB
`=> góc ADB = góc gocd DBC
Xét tam giác `ADH` và tam giác `CBK` có
`AB = CB`(tứ giác ABCD là hbh)
`AHD = CKB = 90^0`
`ADH = CBK(c/mt)`
`=> tam giác ADH = tam giác BCK(ch-gn)
`=> AH = CK`(t/ứng)
xét tg BHCK có :
`AH = Ck`
`AH//CK`
`=> tg BHCK là hình bình hành
a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
góc B chung
Do đó: ΔAHB\(\sim\)ΔCAB
Suy ra: BA/BC=BH/BA
hay \(BA^2=BH\cdot BC\)
b: \(AC=\sqrt{BC^2-AB^2}=24\left(cm\right)\)
\(HC=\dfrac{AC^2}{BC}=\dfrac{24^2}{40}=14.4\left(cm\right)\)
a , Vì là hình thoi
=> AC vuông góc với DB
=> Góc O = 90 độ , BK // AC
=> BK vuông góc với DB tại B
=> Góc B = 90 độ , CK // DB
=> DK vuông góc với AC tại C
=> Góc C = 90 độ
=> TG là hình chữ nhật ( góc vuông )
b , BK // AC <=> BK // OA
OBKC là hình chữ nhật => BK = OC <=> BK = OC ( OA = OC )
=> TG ABKO là hình bình hành = > OK = AB
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
c) -Gọi D là t/đ CN.
-△BCN có: MD là đg trung bình (M t/đ BC, D t/đ CN)
\(\Rightarrow\)MD//BN
-△MNC có: OD là đg trung bình (O t/đ MN, D t/đ CN)
\(\Rightarrow\)OD//MC \(\Rightarrow\)OD⊥AM.
-△AMD có: MN là đg cao, DO là đg cao, MN cắt DO tại O.
\(\Rightarrow\)O là trực tâm △AMD \(\Rightarrow\)AO⊥MD \(\Rightarrow\)AO⊥BN
-Hình: