Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài: \(\left\{{}\begin{matrix}A\in Ox\\B\in Oy\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}A\left(x_A;0\right)\\B\left(0;y_B\right)\end{matrix}\right.\).
Thay vào phương trình đường thẳng \(\left(d\right)\) ta được:
\(\left\{{}\begin{matrix}0=\left(2m+1\right)x_A-2\\y_B=\left(2m+1\right)\cdot0-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_A=\dfrac{2}{2m+1}\\y_B=-2\end{matrix}\right.\).
Do đó: \(\left\{{}\begin{matrix}OA=\left|x_A\right|=\dfrac{2}{\left|2m+1\right|}\\OB=\left|y_B\right|=\left|-2\right|=2\end{matrix}\right.\)
\(\Delta OAB\left(\hat{O}=90^o\right)\) có: \(S=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\)
\(\Leftrightarrow OA\cdot OB=1\)
\(\Leftrightarrow\dfrac{2}{\left|2m+1\right|}\cdot2=1\Leftrightarrow\left|2m+1\right|=4\)
\(\Rightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\left(TM\right)\\m=-\dfrac{5}{2}\left(TM\right)\end{matrix}\right.\).
Đề là \(m\ne-\dfrac{1}{2}\) chứ.
\(x=0\Rightarrow y=-2\Rightarrow OB=2\)
\(y=0\Rightarrow x=\dfrac{2}{2m+1}\Rightarrow OA=\left|\dfrac{2}{2m+1}\right|\)
\(S_{\Delta OAB}=\dfrac{1}{2}.2.\left|\dfrac{2}{2m+1}\right|=\left|\dfrac{2}{2m+1}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left|2m+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{5}{2}\end{matrix}\right.\)
b: Thay x=1 vào y=x+1, ta đc:
y=1+1=2
Thay x=1 và y=2 vào (d), ta được;
m+1-2=2
=>m+1=2
=>m=1
c: Tọa độ A là:
y=0 và (m+1)x-2=0
=>x=2/m+1 và y=0
=>OA=2/|m+1|
Tọa độ B là:
x=0 và y=-2
=>OB=2
Để góc OAB=45 độ thì OA=OB
=>|m+1|=1
=>m=0 hoặc m=-2
Cho x = 0 => y = m - 2
=> d cắt trục Oy tại B(0;m-2) => OB = | m - 2 |
Cho y = 0 => x = \(\frac{2-m}{3m-2}\)
=> d cắt trục Ox tại A(\(\frac{2-m}{3m-2}\);0) => \(OA=\left|\frac{2-m}{3m-2}\right|\)
Ta có : \(S_{OAB}=\frac{1}{2}.OA.OB=\frac{1}{2}\left|\frac{\left(m-2\right)\left(2-m\right)}{3m-2}\right|=\frac{1}{2}\)
\(\Leftrightarrow\left|\frac{-m^2-4+4m}{3m-2}\right|=1\)ĐK : \(\frac{-m^2-4+4m}{3m-2}\ge0\Leftrightarrow\frac{-\left(m-2\right)^2}{3m-2}\ge0\Leftrightarrow\frac{\left(m-2\right)^2}{3m-2}\le0\)
\(\Rightarrow3m-2< 0\Leftrightarrow m< \frac{2}{3}\)
TH1 : \(\frac{-m^2-4+4m}{3m-2}=1\Leftrightarrow-m^2-4+4m=3m-2\)
\(\Leftrightarrow m^2-m+2=0\Leftrightarrow\left(m+\frac{1}{2}\right)^2+\frac{11}{4}>0\)vậy pt vô nghiệm
TH2 : \(\frac{-m^2+4m-4}{3m-2}=-1\Leftrightarrow-m^2+4m-4=2-3m\)
\(\Leftrightarrow m^2-7m+6=0\Leftrightarrow m=1;m=6\)(ktmđk)
Vậy ko có giá trị m để SOAB = 1/2
1: Tọa độ A là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)\cdot x+3=0\left(m+1\right)+3=3\end{matrix}\right.\)
Vậy: A(0;3)
2: Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(m+1\right)=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{3}{m+1}\end{matrix}\right.\)
=>\(B\left(\dfrac{-3}{m+1};0\right)\)
\(OB=\sqrt{\left(-\dfrac{3}{m+1}-0\right)^2+\left(0-0\right)^2}=\dfrac{3}{\left|m+1\right|}\)
\(OA=\sqrt{\left(0-0\right)^2+\left(3-0\right)^2}=3\)
OA=2OB
=>\(3=\dfrac{6}{\left|m+1\right|}\)
=>|m+1|=2
=>\(\left[{}\begin{matrix}m+1=2\\m+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)
a: Để (d) cắt (d') tại một điểm nằm trên trục tung thì
\(\left\{{}\begin{matrix}-2m+1< >2\\-m+1=m+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2m< >1\\-m-m=3-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< >-\dfrac{1}{2}\\-2m=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m< >-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-1\)
b: (d): \(y=-\left(2m-1\right)x-m+1\)
\(=-2mx+x-m+1\)
\(=m\left(-2x-1\right)+x+1\)
Tọa độ điểm cố định mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}-2x-1=0\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x=1\\y=x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}+1=\dfrac{1}{2}\end{matrix}\right.\)
c: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\-\left(2m-1\right)x-m+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\\left(-2m+1\right)x=m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{m-1}{-2m+1}\end{matrix}\right.\)
=>\(A\left(\dfrac{m-1}{-2m+1};0\right)\)
\(OA=\sqrt{\left(\dfrac{m-1}{-2m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{m-1}{2m-1}\right)^2}=\dfrac{\left|m-1\right|}{\left|2m-1\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=-\left(2m-1\right)\cdot x-m+1=-\left(2m-1\right)\cdot0-m+1=-m+1\end{matrix}\right.\)
vậy: B(0;-m+1)
\(OB=\sqrt{\left(0-0\right)^2+\left(-m+1-0\right)^2}=\sqrt{\left(-m+1\right)^2}\)
\(=\left|m-1\right|\)
Vì ΔOAB vuông tại O nên \(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\)
\(=\dfrac{1}{2}\cdot\left|m-1\right|\cdot\dfrac{\left|m-1\right|}{\left|2m-1\right|}\)
\(=\dfrac{\dfrac{1}{2}\left(m-1\right)^2}{\left|2m-1\right|}\)
Để \(S_{AOB}=1\) thì \(\dfrac{1}{2}\cdot\dfrac{\left(m-1\right)^2}{\left|2m-1\right|}=1\)
=>\(\dfrac{\left(m-1\right)^2}{\left|2m-1\right|}=2\)
=>\(\left(m-1\right)^2=2\left|2m-1\right|\)(1)
TH1: m>1/2
Phương trình (1) sẽ tương đương với \(\left(m-1\right)^2=2\left(2m-1\right)\)
=>\(m^2-2m+1=4m-2\)
=>\(m^2-6m+3=0\)
=>\(\left[{}\begin{matrix}m=3+\sqrt{6}\left(nhận\right)\\m=3-\sqrt{6}\left(nhận\right)\end{matrix}\right.\)
TH2: m<1/2
Phương trình (2) sẽ tương đương với:
\(\left(m-1\right)^2=2\left(-2m+1\right)\)
=>\(m^2-2m+1=-4m+2\)
=>\(m^2-2m+1+4m-2=0\)
=>\(m^2+2m-1=0\)
=>\(\left[{}\begin{matrix}m=-1+\sqrt{2}\left(nhận\right)\\m=-1-\sqrt{2}\left(nhận\right)\end{matrix}\right.\)
PT giao Ox, Oy là:
\(y=0\Leftrightarrow x=\dfrac{2}{2m+1}\Leftrightarrow A\left(\dfrac{2}{2m+1};0\right)\Leftrightarrow OA=\dfrac{2}{\left|2m+1\right|}\\ x=0\Leftrightarrow y=-2\Leftrightarrow B\left(0;-2\right)\Leftrightarrow OB=2\)
\(a,\) Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=\sqrt{2}\)
Ap dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(2m+1\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{\left(2m+1\right)^2}{4}=\dfrac{1}{4}\Leftrightarrow4m^2+4m+1=1\\ \Leftrightarrow4m\left(m+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)
\(b,S_{AOB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\Leftrightarrow OB\cdot OA=1\\ \Leftrightarrow\dfrac{2}{\left|2m+1\right|}\cdot2=1\Leftrightarrow\left|2m+1\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{5}{2}\end{matrix}\right.\)
Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x+m-6=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(2m-1\right)=-m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-m+6}{2m-1}\\y=0\end{matrix}\right.\)
Vậy: \(A\left(\dfrac{-m+6}{2m-1};0\right)\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)x+m-6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\y=0\left(2m-1\right)+m-6=m-6\end{matrix}\right.\)
=>B(0;m-6)
\(O\left(0;0\right);A\left(\dfrac{-m+6}{2m-1};0\right);B\left(0;m-6\right)\)
\(OA=\sqrt{\left(\dfrac{-m+6}{2m-1}-0\right)^2+\left(0-0\right)^2}=\left|\dfrac{m-6}{2m-1}\right|\)
\(OB=\sqrt{\left(0-0\right)^2+\left(m-6-0\right)^2}\)
\(=\sqrt{\left(m-6\right)^2}=\left|m-6\right|\)
OA=2OB
=>\(\dfrac{\left|m-6\right|}{\left|2m-1\right|}=2\left|m-6\right|\)
=>\(\dfrac{\left|m-6\right|}{\left|2m-1\right|}-2\left|m-6\right|=0\)
=>\(\left|m-6\right|\left(\dfrac{1}{\left|2m-1\right|}-2\right)=0\)
=>\(\left[{}\begin{matrix}m-6=0\\\left|2m-1\right|=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m-6=0\\2m-1=\dfrac{1}{2}\\2m-1=-\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=6\left(nhận\right)\\m=\dfrac{3}{4}\left(nhận\right)\\m=\dfrac{1}{4}\left(nhận\right)\end{matrix}\right.\)