K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

a: Bảng giá trị:

x123
\(y=3^x\)3927

Vẽ đồ thị:

loading...

b: Bảng giá trị:

x234
\(y=\left(\dfrac{1}{2}\right)^x\)1/41/81/16

 

vẽ đồ thị:

loading...

 

a: Bảng giá trị:

x5505005000
\(y=log2x\)1234

Vẽ đồ thị:

loading...

b: bảng giá trị:

x41664256
\(y=log_{\dfrac{1}{4}}x\)-1-2-3-4

Vẽ đồ thị:

loading...

a: \(\lim\limits_{x\rightarrow3}\dfrac{x+3}{x^2-9}=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3}x+3=3+3=6\\\lim\limits_{x\rightarrow3}x^2-9=0\end{matrix}\right.\)

=>x=3 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x+3}{x^2-9}\)

\(\lim\limits_{x\rightarrow-3}\dfrac{x+3}{x^2-9}=\lim\limits_{x\rightarrow-3}\dfrac{1}{x-3}=\dfrac{1}{-3-3}=-\dfrac{1}{6}\)

=>x=-3 không là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x+3}{x^2-9}\)

b: \(\lim\limits_{x\rightarrow5}\dfrac{x-5}{x^2-25}=\lim\limits_{x\rightarrow5}\dfrac{1}{x+5}=\dfrac{1}{5+5}=\dfrac{1}{10}\)

=>x=5 không là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-5}{x^2-25}\)

\(\lim\limits_{x\rightarrow-5}\dfrac{x-5}{x^2-25}=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-5}x-5=-5-5=-10< 0\\\lim\limits_{x\rightarrow-5}x^2-25=0\end{matrix}\right.\)

=>x=-5 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-5}{x^2-25}\)

c: \(\lim\limits_{x\rightarrow1}\dfrac{x^2-4x+3}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{x-3}{x+1}=\dfrac{1-3}{1+1}=\dfrac{-2}{2}=-1\)

=>x=1 không là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x^2-4x+3}{x^2-1}\)

\(\lim\limits_{x\rightarrow-1}\dfrac{x^2-4x+3}{x^2-1}=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-1}x^2-4x+3=\left(-1\right)^2-4\cdot\left(-1\right)+3=8>0\\\lim\limits_{x\rightarrow-1}x^2-1=0\end{matrix}\right.\)

=>x=-1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x^2-4x+3}{x^2-1}\)

d: \(\lim\limits_{x\rightarrow3}\dfrac{x^2-3x-4}{x^2-2x-3}=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3}x^2-3x-4=3^2-3\cdot3-4=-4< 0\\\lim\limits_{x\rightarrow3}x^2-2x-3=0\end{matrix}\right.\)

=>x=3 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x^2-3x-4}{x^2-2x-3}\)

\(\lim\limits_{x\rightarrow-1}\dfrac{x^2-3x-4}{x^2-2x-3}=\lim\limits_{x\rightarrow-1}\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{x-4}{x-3}=\dfrac{-1-4}{-1-3}=\dfrac{5}{4}\)

=>x=-1 không là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x^2-3x-4}{x^2-2x-3}\)

a: \(\lim\limits_{x\rightarrow+\infty}y=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{9x^2+x}+x}{2x+5}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{9+\dfrac{1}{x}}+1}{2+\dfrac{5}{x}}=\dfrac{\sqrt{9}+1}{2}=\dfrac{3+1}{2}=2\)

=>Đường thẳng y=2 là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\sqrt{9x^2+x}+x}{2x+5}\)

\(\lim\limits_{x\rightarrow-\infty}y=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{9x^2+x}+x}{2x+5}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{9+\dfrac{1}{x}}+1}{2+\dfrac{5}{x}}=\dfrac{-3+1}{2}=\dfrac{-2}{2}=-1\)

=>Đường thẳng y=-1 là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\sqrt{9x^2+x}+x}{2x+5}\)

b: \(\lim\limits_{x\rightarrow+\infty}y=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{2x^2+1}-x}{x+2}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{2+\dfrac{1}{x^2}}-1}{1+\dfrac{2}{x}}=\dfrac{\sqrt{2}-1}{1}=\sqrt{2}-1\)

=>Đường thẳng \(y=\sqrt{2}-1\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\sqrt{2x^2+1}-x}{x+2}\)

\(\lim\limits_{x\rightarrow-\infty}y=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{2x^2+1}-x}{x+2}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{2+\dfrac{1}{x^2}}-1}{1+\dfrac{2}{x}}=\dfrac{-\sqrt{2}-1}{1}=-\sqrt{2}-1\)

=>Đường thẳng \(y=-\sqrt{2}-1\) là một tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\sqrt{2x^2+1}-x}{x+2}\)

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m+3\right)x-5}{x+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m+3\right)x-5}{x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

=>Đường thẳng y=2m+3 là đường tiệm  cận ngang duy nhất của đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\)

Để đường thẳng y=2m+3 đi qua A(-1;3) thì 2m+3=3

=>2m=0

=>m=0

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

=>Đường thẳng \(y=m^2-3m\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

=>\(m^2-3m=-2\)

=>\(m^2-3m+2=0\)

=>(m-1)(m-2)=0

=>m=1 hoặc m=2

13 tháng 7

Đúng 

Tham khảo:

a:

b: 

a: ĐKXĐ: 2x+6>0

=>2x>-6

=>x>-2

b: ĐKXĐ: x-6>0

=>x>6

c: ĐKXĐ: \(\left\{{}\begin{matrix}\dfrac{1}{2-x}>0\\2-x\ne0\end{matrix}\right.\)

=>2-x>0

=>x<2

d: ĐKXĐ: \(\left(x-6\right)\left(x+2\right)>0\)

=>\(\left[{}\begin{matrix}x-6>0\\x+2< 0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x>6\\x< -2\end{matrix}\right.\)

NV
12 tháng 1

ĐKXĐ:

a.

\(2x-4>0\Rightarrow x>2\Rightarrow D=\left(2;+\infty\right)\)

b.

\(2x+8>0\Rightarrow x>-4\Rightarrow D=\left(-4;+\infty\right)\)

c.

\(4-x>0\Rightarrow x< 4\Rightarrow D=\left(-\infty;4\right)\)

d.

\(\dfrac{1}{x+4}>0\Rightarrow x>-4\Rightarrow D=\left(-4;+\infty\right)\)

e. 

\(\left(x-3\right)\left(x+9\right)>0\Rightarrow\left[{}\begin{matrix}x>3\\x< -9\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-9\right)\cup\left(3;+\infty\right)\)

a: ĐKXĐ: 2x-4>0

=>2x>4

=>x>2

b: ĐKXĐ: 2x+8>0

=>2x>-8

=>x>-4

c: ĐKXĐ: 4-x>0

=>-x>-4

=>x<4

d: ĐKXĐ: \(\dfrac{1}{x+4}>0\)

=>x+4>0

=>x>-4

e: ĐKXĐ: \(\left(x-3\right)\left(x+9\right)>0\)

=>\(\left[{}\begin{matrix}x-3>0\\x+9< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -9\end{matrix}\right.\)