K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số đo góc A:

180-35-55=90 (độ)

Vì: tam giác ABC có 1 trong 3 góc tạo thành có 1 góc bằng 90 độ.

=> Tam giác ABC là tam giác vuông tại đỉnh A.

24 tháng 9 2016

ta có  góc B + góc C +góc A = 180 độ

=>  góc A =180 độ - góc B - góc C

               = 180 độ  - 35 độ - 55 độ

               = 90 độ

 Vậy tam giác ABC là tam giác vuông

28 tháng 11 2016

Góc C= 35° 

Vì tổng của tam giác là 180° mà góc A=90(góc vuông) góc B lại =55° nên góc C= 180_(90+55)=35

24 tháng 12 2018

a) Hai tam giác ABD và HBD có :

+ Chung BD

+ Góc ABD = Góc HBD(gt)

+ BA = BH (gt)

Vậy hai tam giác trên bằng nhau theo trường hợp c.g.c

b) Vì tam giác ABD = tam giác HBD nên ta suy ra được góc BAD = góc BHD = 90 độ

Hay HD vuông góc BC

c)

góc C = 60 độ

=> góc ABC = 30 độ

góc ABD = 30 độ / 2 = 15 độ (BD phân giác)

Vậy góc ADB = 90 độ - 15 độ = 75 độ

24 tháng 12 2018

Thanks

5 tháng 4 2017

Bạn tự vẽ hình nhé :

a)\(\Delta ABC\)cân tại A có\(\widehat{B}=\widehat{C}\).\(\Delta BMI,\Delta CNI\)lần lượt vuông tại M,N có : BI = CI (I là trung điểm BC) ;\(\widehat{B}=\widehat{C}\)(cmt)

\(\Rightarrow\Delta BMI=\Delta CNI\left(ch-gn\right)\)

b)\(\Delta AIB,\Delta AIC\)có AI chung ; AB = AC (\(\Delta ABC\)cân tại A) ; IB = IC nên\(\Delta AIB=\Delta AIC\left(c.c.c\right)\)

=>\(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng) mà\(\widehat{AIB}+\widehat{AIC}=180^0\)(kề bù)\(\Rightarrow\widehat{AIC}=90^0\)

Áp dụng định lí Pi-ta-go vào các tam giác vuông\(\Delta AIC,\Delta AIN,\Delta INC\),ta lần lượt có :

AI2 + IC2 = AC2 ; AN2 = AI2 - IN2 ; NC2 = IC2 - IN2

=> AC2 - AN2 - NC2 = AI2 + IC2 - AI2 + IN2 - IC2 + IN2 = 2IN2

c) BM = CN (2 cạnh tương ứng của\(\Delta BMI=\Delta CNI\)) mà AB = AC

=> AB - BM = AC - CN hay AM = AN => \(\Delta AMN\)cân tại A

5 tháng 4 2017

A B C I M N

a)\(\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(\widehat{MBI}=\widehat{NCI}\right)\)

Xét \(\Delta BMI\)\(\Delta CNI:\hept{\begin{cases}\widehat{BMI}=\widehat{CNI}=90^0\\BM=CN\\\widehat{MBI}=\widehat{NCI}\end{cases}\Rightarrow\Delta BMI=\Delta CNI}\)(cạnh huyền góc nhọn)

b) Xét \(\Delta CNI:\widehat{CNI}=90^0\Rightarrow\)\(IN^2=IC^2-CN^2\left(Pytago\right)\left(1\right)\)

          \(\Delta AIN:\widehat{INA}=90^0\Rightarrow IN^2=IA^2-AN^2\left(Pytago\right)\left(2\right)\)

   Từ (1) và (2)\(\Rightarrow2IN^2=IC^2-CN^2+IA^2-AN^2=IC^2+IA^2-AN^2-NC^2\left(3\right)\)

Xét \(\Delta AIC:\widehat{AIC}=90^0\)(AI là đường trung tuyến và cũng là đường cao)

\(\Rightarrow AI^2+IC^2=AC^2\left(Pytago\right)\left(4\right)\)

Thay (4) vào 93), ta có: \(2IN^2=AC^2-AN^2-NC^2\left(đpcm\right)\)

c) I là trung điểm của BC=> AI là dường trung tuyến. Mà \(\Delta ABC\)cân tại A=> AI cũng là đường phân giác.

\(\Rightarrow\widehat{MAI}=\widehat{NAI}\)

Xét \(\Delta MAI\)và \(\Delta NAI:\hept{\begin{cases}\widehat{AMI}=\widehat{ANI}=90^0\\AI\\\widehat{MAI}=\widehat{NAI}\end{cases}\Rightarrow\Delta MAI=\Delta NAI}\)(cạnh huyền góc nhọn)

\(\Rightarrow AM=AN\Rightarrow\Delta AMN\)cân tại A.

Giải hơi muộn nhưng các bạn nhớ nha. 

31 tháng 1 2018

a) \(\Delta AHB\)và \(\Delta AHC\)có :

\(AB=AC\)( vì \(\Delta ABC\)là tam giác cân ) 

\(AH\)là cạnh chung 

\(BH=CH\)( vì H là trung điểm của BC )

Do đó : \(\Delta AHB=\Delta AHC\left(c-c-c\right)\)

31 tháng 1 2018

bn ơi mk xl nha, mk ko biết vẽ hình trên olm!!!

   \(\Delta ABC\)cân  tại   \(A\)  có    \(H\)là trung điểm  \(BC\)

\(\Rightarrow\)\(AH\)là  trung  tuyến  đồng thời là đường cao

\(\Rightarrow\)\(AH\perp BC\)

\(\Rightarrow\)\(\widehat{AHB}=\widehat{AHC}=90^0\)

Xét 2 tam giác vuông:    \(\Delta AHB\)và     \(\Delta AHC\)có:

       \(AB=AC\)(gt)

     \(\widehat{ABH}=\widehat{ACH}\)  (gt)

suy ra:   \(\Delta AHB=\Delta AHC\)  (ch_gn)

7 tháng 1 2018

Chịu tôi mới lop5 làm sao dc

7 tháng 11 2016

1/ Ta có: tam giác ABC = tam giác DEF

=> góc A = góc D

góc B = góc E

góc C = góc F

Ta có: góc A + góc B + góc C = 1800

1300 + góc C = 1800

góc C = 1800-1300 = 500

Ta có: góc A + góc B = 1300

góc A + 550 = 1300

góc A = 1300 - 550 =750

Vậy góc A = góc D = 750

góc B = góc E = 550

góc C = góc F = 500

2/ Ta có: tam giác DEF = tam giác MNP

=> DE = MN

EF = NP

FD = PM

Ta có: EF + FD = 10 cm

Mà NP - MP = EF - FD = 2 cm

EF = (10 + 2) : 2 = 6 (cm)

FD = (10 - 2) : 2 = 4 (cm)

Vậy DE = MN = 3 cm

EF = NP = 6 cm

FD = MP = 4 cm

7 tháng 11 2016

1) Ta có: ( \(\widehat{A}\) + \(\widehat{B}\)) + \(\widehat{C}\) = 180o

hay 130o + \(\widehat{C}\) = 180o

\(\Rightarrow\) \(\widehat{C}\) = 180o - 130o = 50o

Vì ΔABC = ΔDEF nên ta có:

\(\widehat{C}\) = \(\widehat{F}\) = 50o

\(\widehat{E}\) = \(\widehat{B}\) = 55o

Ta có: \(\widehat{A}\) + \(\widehat{B}\) = 130o hay \(\widehat{A}\) + 55o = 130o

\(\Rightarrow\) \(\widehat{A}\) = 130o - 55o = 75o

\(\Leftrightarrow\) \(\widehat{A}\) = \(\widehat{D}\) = 75o

Vậy: \(\widehat{A}\) = \(\widehat{D}\) = 75o

\(\widehat{B}\) = \(\widehat{E}\) = 55o

\(\widehat{C}\) = \(\widehat{F}\) = 50o

2) ΔDEF = ΔMNP nên:

\(\Rightarrow\) DE = MN

EF = NP

FD = PM

Ta có: EF + FD = 10cm

mà ΔDEF = ΔMNP

\(\Rightarrow\) NP - MP = EF - FD = 2cm

\(\Rightarrow\) EF = \(\frac{10+2}{2}\) = 6cm

FD = 6cm - 2cm = 4cm

Vậy: DE= MN = 3cm

EF = NP = 6cm

FD = PM = 4cm