Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\Delta ABC\) vuông tại \(A\)
\(\Rightarrow\) \(AB , AC\) là hai cạnh góc vuông còn \(BC\) là cạnh huyền
Áp dụng định lý Py \(-\) ta \(-\) go vào \(\Delta ABC\) , ta có :
\(BC^2=AB^2+AC^2=3^2+4^2=9+16=25=5^2\)
\(\Rightarrow\) \(BC=5\)
Vậy \(BC = 5 cm\)
- Vẽ góc ∠ xAy = 90º
- Trên tia Ax lấy điểm B sao cho AB = 3cm.
Trên tia Ay lấy điểm C sao cho AC = 1cm.
- Nối các điểm B và C ta được tam giác ABC thỏa mãn.
Đo góc C ta được ∠C ≈ 72o.
a) Vì tam giác ABC có AB=AC
=> ∆ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\)
b) Ta có: \(\left\{{}\begin{matrix}\widehat{ABE}+\widehat{ABC}=180^o\\\widehat{ACD}+\widehat{ACD}=180^o\end{matrix}\right.\)
Mà \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Lại có: \(\widehat{EAB}+\widehat{BAC}=90^o\)
\(\widehat{DAC}+\widehat{CAB}=90^o\)
=> \(\widehat{EAB}=\widehat{DAC}\)
Xét ∆EAB và ∆DAC:
AB=AC(gt)
\(\widehat{EAB}=\widehat{DAC}\left(cmt\right)\)
\(\widehat{ABE}=\widehat{ACD}\left(cmt\right)\)
=> ∆EAB=∆DAC(g.c.g)
=> EB=CD(2 cạnh t/ứ)
=> EB+BC=DC+BC
=> EC=BD
=> Đpcm
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)
Giải đi