K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

Cu ghi đề như cc

1 tháng 1 2019

A B C E F D M N

a) Xét \(\bigtriangleup BCE \) và \(\bigtriangleup CBD\) có:

\(EC=BD\left(gt\right)\)

\(\widehat{ECB}=\widehat{CBD}\)(2 góc sole trong do BD//CE)

\(BC-chung\)

\(\implies \bigtriangleup BCE=\bigtriangleup CBD(c.g.c)\)

b) Có: \(\bigtriangleup BCE=\bigtriangleup CBD(cmt)\)

\(\implies EB=CD\)(1)

Có: AB=CD(gt)

\(\Rightarrow\frac{1}{2}AB=\frac{1}{2}CD\Rightarrow EB=CF\)(2)

Từ (1) và (2) \(\implies CD=CF\)

Có: AB=CD(gt)

\(\implies \bigtriangleup ABC\) cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(2 góc ở đáy)

Xét \(\bigtriangleup ECB\) và \(\bigtriangleup FBC\)  có:

\(EB=FC(cmt)\)

\(\widehat{EBC}=\widehat{FCB}\left(cmt\right)\)

\(BC-chung\)

\(\implies \bigtriangleup ECB=\bigtriangleup FBC(c.g.c)\)

\(\implies BF=CE\)(2 cạnh tương ứng)

c) Có: \(\bigtriangleup BCE= \bigtriangleup CBD\)

\(\Rightarrow\widehat{EBC}=\widehat{DCB}\)

Gọi FD giao BC tại N

Xét \(\Delta FCN\) và \(\Delta DCN\) có;

\(CF=CD\)(câu b)

\(\widehat{FCN}=\widehat{DCN}\left(cmt\right)\)

\(CN-chung\)

\(\Rightarrow\Delta FCN=\Delta DCN\left(c.g.c\right)\)

\(\Rightarrow\widehat{CNF}=\widehat{CND}\)(2 góc tương ứng)

Mà \(\widehat{CNF}+\widehat{CND}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{CNF}=\widehat{CND}=90^o\Rightarrow FD\perp BC\)

d) Xét \(\Delta EMC\) và \(\Delta DMB\) có:

\(EC=BD\left(gt\right)\)

\(\widehat{ECM}=\widehat{MBD}\)

\(MB=MC\)(vì M-trung điểm BC)

\(\Rightarrow\Delta EMC=\Delta DMB\left(c.g.c\right)\)

\(\Rightarrow\widehat{EMC}=\widehat{DMB}\)(2 góc tương ứng)

Mà \(\widehat{BME}+\widehat{EMC}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{BME}+\widehat{DMB}=180^o\)

\(\Rightarrow EM\equiv MD\)

\(\implies E;M;D\) thẳng hàng

_Học tốt_

31 tháng 12 2018

d) Ta có EC // BD và EC = BD ( tam giác BCE = tam giác CBD )

=> tứ giác BECD là hình bình hành

=> ED giao BC tại trung điểm mỗi đường

Mà M là trung điểm của BC nên M là trung điểm của ED

=> M, E, D thẳng hàng ( đpcm )

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau