Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- vẽ MH và MK lần lượt vuông góc với AB và AC
- Xét \(\Delta AHM\)vuông tại H và\(\Delta AKM\)vuông tại K có: AM: cạnh chung
\(\widehat{HAM}=\widehat{KAM}\)(vì AM là tia phân giác của \(\widehat{A}\))
\(\Rightarrow\)\(\Delta AHM=\Delta AKM\)(cạnh huyền - góc nhọn)
\(\Rightarrow\)MH = MK (2 cạnh tương ứng)
- Xét \(\Delta BHM\)vuông tại H và\(\Delta CKM\)vuông tại K có: BM = CM ( M là trung diểm của BC)
HM = KM (cmt)
\(\Rightarrow\)\(\Delta BHM=\Delta CKM\)(cạnh huyền - cạnh góc vuông)
\(\Rightarrow\)\(\widehat{B}=\widehat{C}\)(2 góc tương ứng)
Vậy \(\Delta ABC\)cân tại A ( vì có góc B và góc C là 2 góc ở đáy bằng nhau )
1.
Theo bài ra ta có:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
Ta có:
\(\frac{x}{8}=\frac{y}{12},\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra:
x = 2 . 8 = 16
y = 2 . 12 = 24
z = 2 . 15 = 30
2/
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
Ta có :x = 2k ; y = 5k
=>x . y = 2k . 5k = 10k2 = 10 => k2 = 1 => k = ±1
Thay k = 1 ta có : x = 2 . 1 = 2 ; y = 5 . 1 = 5
Thay k = -1 ta có : x = 2 . (-1) = -2 ; y = 5 . (-1) = -5
Vậy x = ±2 ; y = ±5
3/
Giải:
Gọi số học sinh khối 6,7,8,9 lần lượt là a,b,c,d .
Theo bài ra ta có:
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)
Suy ra :
a = 35 . 9 = 315
b = 35 . 8 = 280
c = 35 . 7 = 245
d = 35 . 6 = 210
Vậy số học sinh khối 6,7,8,9 lần lượt là 315;280;245;210 .
a2+ab+b23=25⇒a2+ab+b2325=1a2+ab+b23=25⇒a2+ab+b2325=1
Tương tự :c2+b239=1;a2+ac+c216=1c2+b239=1;a2+ac+c216=1
Áp dụng t/c dãy tỉ số bằng nhau , ta có
c2+b239=a2+ac+c216=2c2+ac+b23+a225c2+b239=a2+ac+c216=2c2+ac+b23+a225
⇒a2+ab+b2325=2c2+ac+a2+b2325⇒a2+ab+b23=2c2+ac+a2+b23⇒a2+ab+b2325=2c2+ac+a2+b2325⇒a2+ab+b23=2c2+ac+a2+b23
⇒ab=2c2+ac⇒ab+ac=2c2+2ac⇒a(b+c)=2c(a+c)⇒2ca=b+ca+c (đpcm)
Ta có A.(-7)-A=(-8)A=[(-7).[(-7)+(-7)2 +...+(-7)2007 ]-[(-7)+(-7)2 +...+(-7)2007 =(-7)2 +(-7)3 +...+(-7)2008 -[(-7)+(-7)2 +...+(-7)2007 = (-7)2008 +7=>A=[(-7)2008 +7]/(-8)
\(\frac{x+6}{15}=\frac{5-x}{7}\)
\(\Leftrightarrow\left(x+6\right).7=\left(5-x\right).15\)
\(\Leftrightarrow7x+42=75-15x\)
\(\Leftrightarrow7x+15x=75-42\)
\(\Leftrightarrow22x=33\)
\(\Leftrightarrow x=\frac{3}{2}\)
=> 7.(x+6)= 15.(5-x)
=> 7x +7.6=15.5-15x
=> 7x + 42= 75 -15x
=> 7x+15x=75-42
=> 22x=33
=>x= 1,5
Ta có: \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{200}\)
\(\Rightarrow\) \(\left(-7\right)A=\left(-7\right)^2+\left(-7\right)^3+\left(-7\right)^4+...+\left(-7\right)^{201}\)
\(\Rightarrow\)\(A-\left(-7\right)A=8A=\left(-7\right)-\left(-7\right)^{201}\)
\(\Rightarrow\) \(A=\frac{\left(-7\right)-\left(-7\right)^{201}}{8}=\frac{\left(-7\right)+7^{201}}{8}\)
A=(-7)+(-7)^2+...+(-7)^200
7a=-[7^2+7^3+...+7^201]
7a-a=-[(7^2+7^3+...+7^201)-(7+7^2+...+7^200)]
6a=-(7^2+7^3+...+7^201-7-7^2+...+7^200)
6a=-(7^201-7)
a=-\(\frac{-\left(7^{201}-7\right)}{6}\)