K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

A B C K P H I M

c.theo chứng minh câu b là tam giác BMH =tam giác KMC nên ta có góc BMH= góc CMK

vì MK vuông góc với AC và BP vuông góc với AC nên BP//MK(từ vuong góc tới//)

nên => góc PMC = góc KMC(đồng vị)

vậy ta có góc PBC= góc BMH( vì cùng bằng góc KMC)

nên tam giác BIM cân tại I

 

5 tháng 5 2016

a) Vì tam giác ABC là tam giác cân có 

    AM là đường trugn tuyến

nên AM vừa là đường cao vừa là đường phân giác

=> Góc BAM = góc MAC 

Xét \(\Delta AMB\) và \(\Delta MAC\)

góc BAM = góc CAM ( CMT)

AM chung

AMB = góc AMC ( cùng bằng 90 độ )

Vậy Tam giác ABM = tam giác AMC  ( c-g-v-g-n-k)

b) Xét tam giác AHM và tam giác AKM có 

AM chung

Góc AHM =AKM ( = 90 độ) 

HAM =MAK ( cmt câu a) 

nên Tam giác  AHM = tam giác AKM (c-h-g-n)

=> HM = MK

và BHM = MKC , góc B= C

Nên tam giác BHM = KMC 

=> HB = KC

c) Ta có BP VUÔNG GÓC VỚI AC 

và MK vuông góc với AC 

Nên BP// MK 

=> góc PBM = KMC 

Mà KMC = HMB ( vÌ  tam giác BHM = KMC )

Suy ra : PBM = góc HMB

Hay tam giác IBM cân tại I

5 tháng 5 2016

a) Tính chất tam giác cân => góc ABC= gócACB

=> góc ABM= góc ACM

b)Xét tam giác BHM và tam giác CKM có:

góc B= góc C

Góc BHM= góc CKM = 90 độ

MB=MC

=> tam giác BHM đồng dạng tam giác CKM (cạnh huyền, góc nhọn)

=>BH=CK (2canh tương ứng)

c)Xét tam giác BPC có góc P =90 độ, góc PCB = góc KCM = góc HBM(cmt)

=> góc PBC= góc IMB

=> góc IBM= góc IMB

=> tam giác IMB cân tại I

7 tháng 5 2019

bạn học trường nào vậy

7 tháng 5 2019

Hình tự vẽ

C/m: a, Xét \(\Delta ABM\)và \(\Delta ACM\) có:

AB = AC (do tam giác ABC cân tại A)

BM = CM ( do M là trung điểm của BC)

AM chung

=> \(\Delta ABM=\Delta ACM\)(c.c.c)

b, Xét tam giác BHM vuông tại H và CKM vuông tại K có:

BM = MC (do M là trung điểm của BC)

\(\widehat{ABC}=\widehat{ACB}\)(do tam giác ABC cân tại A)

=> \(\Delta BHM=\Delta CKM\)(cạnh huyền - góc nhọn)

=> BH = CK (2 cạnh tương ứng)

8 tháng 5 2019

c, vì tam giác HMB=tam giác KMC(CH-GN) => \(\widehat{HMB}\)=\(\widehat{KMC}\)

mà \(\widehat{IBM}\)=\(\widehat{KMC}\)(vì ở vị trí đồng vị)

=> \(\widehat{IMB}\)=\(\widehat{IBM}\)(Vì cùng bằng góc \(\widehat{KMC}\))

=> tam giác IBM cân tại I 

A B C M H K P I

27 tháng 4 2023

sai