Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABC cân nên đpg Ah cx là đườg cao;AH=BC/2
=>BC=3căn2
ta có: AB*AC=BC*AH<=>AB^2=3căn2*3căn2/2<=>AB=3
a,Tam giác ABC có A + B + C =180 độ
suy ra 55 độ +80 độ =180 độ
suy ra C=45 độ
b,Ta có C<A<B
suy ra AB<BC<AC.
c) Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{B}+\widehat{C}=180^0-40^0=140^0\)
Ta có: \(\widehat{B}:\widehat{C}=3:4\)(gt)
nên \(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}\)
mà \(\widehat{B}+\widehat{C}=140^0\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{B}+\widehat{C}}{3+4}=\dfrac{140^0}{7}=20^0\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{\widehat{B}}{3}=20^0\\\dfrac{\widehat{C}}{4}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=60^0\\\widehat{C}=80^0\end{matrix}\right.\)
Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\left(40^0< 60^0< 80^0\right)\)
mà cạnh đối diện với \(\widehat{A}\) là cạnh BC
cạnh đối diện với \(\widehat{B}\) là cạnh AC
và cạnh đối diện với \(\widehat{C}\) là cạnh AB
nên BC<AC<AB
a)
vì A;B ;C tỉ lệ với 1;2;6
=>A/1=B/2=C/6
mà A+B+C=180 độ (tổng 3 g của 1 tg)
áp dụng tc dãy tỉ số = nhau ta có:
A/1=B/2=C/6=A+B+C/1+2+6=180/9=20 độ
=>A/1=20=>a=20 độ
=>B/2=20=>B=40 độ
=>C/6=20=>C=120độ
mình ko vẽ hình nha
tam giác ABC có:
^A + ^B + ^C = 180o (^ là dấu góc nha bạn do mình ko biết đánh dấu góc sao)
=> 6^C + 3^C + C = 180o
^C (6+3+1) = 180o
10^C = 180o
^C = 180o : 10 = 18o
mà ta có: ^B = 3^C
hay ^B = 3 . 18o
^B = 54o
ta lại có: ^A = 2^B
hay ^A = 2 . 54o
^A = 108o
Tính chất của tam giác cân: 2 góc ở đáy thì bằng nhau
Vậy góc ở đáy còn lại là: 500
Vậy góc ở đỉnh là: 180 - (50+50) = 180- 100 = 80
Vậy góc ở đỉnh là 800
A B C 50 110 x y z
a) Có: góc ACB + góc ACx = 180 độ (kề bù)
=> góc ACB = 70 độ
Mà góc BAC + góc ABC + góc ACB = 180 độ (định lý tổng 3 góc tam giác)
=> Góc ABC = 60 độ
b) Có: góc CAy + góc BAC = 180 độ ( kề bù)
=> góc CAy = 130 độ
góc ABC + góc ABz = 180 độ (kề bù)
=> góc ABz = 120 độ
A B C 110 1 2 1 50 2 1 2
Ta có: \(\widehat{C1}+\widehat{C2}=180^o\)(kề bù)
\(\widehat{C1}+110^o=180^o\)
\(\widehat{C1}=180^o-110^o=70^o\)
\(\Rightarrow\widehat{C1}=70^o\)
Xét tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(50^o+\widehat{B}+70^o=180^o\)
\(\widehat{B}=180^o-\left(50^o+70^o\right)=60^o\)
\(\Rightarrow\widehat{B}=60^o\)
Vì \(\widehat{B1}\)là số đo góc ngoài tại đỉnh A của tam giác ABC
=> \(\widehat{B1}=\widehat{A}+\widehat{C}=50^o+70^o=120^o\)
Vì \(\widehat{A1}\)là số đo góc ngoài tại đỉnh A của tam giác ABC
\(\Rightarrow\widehat{A1}=\widehat{B}+\widehat{C}=70^o+60^o=130^o\)