K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

3/4! + 3/5! + 3/6! + ... + 3/100!

< 3/4! + 4/5! + 5/6! + ... + 99/100!

< 4/4! - 1/4! + 5/5! - 1/5! + 6/6! - 1/6! + ... + 100/100! - 1/100!

< 1/3! - 1/4! + 1/4! - 1/5! + 1/5! - 1/6! + ... + 1/99! - 1/100!

< 1/3! - 1/100! < 1/3!

14 tháng 7 2018

câu a

Gọi ƯCLN (12n+1,30n+2) là d

⇒(12n+1)⋮d

(30n+2)⋮d

⇒5(12n+1)−2(30n+2)⋮d

⇒60n+5−60n−4⋮d

⇒1⋮dd=1

Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản 

6 tháng 5 2016

Xét A= \(\frac{3}{4}\)\(\frac{8}{9}\) +...+ \(\frac{399}{400}\)

= (1 - \(\frac{1}{2^2}\)) + (1- \(\frac{1}{3^2}\)) +...+ (1- \(\frac{1}{20^2}\))

= (1+1+1+...+1) - (\(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)+...+ \(\frac{1}{20^2}\)) Bạn phải mở ngoặc có 19 số 1 nha!

= 19 - (\(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)+...+ \(\frac{1}{20^2}\))  

Đặt B =\(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)+...+ \(\frac{1}{20^2}\) < \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +...+ \(\frac{1}{19.20}\) = 1- \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) +...+ \(\frac{1}{19}\) - \(\frac{1}{20}\) = 1 - \(\frac{1}{20}\) = \(\frac{19}{20}\)

=> A= 19 - B= 18+ 1- \(\frac{19}{20}\) >18 => A>18

12 tháng 3 2018

Gợi ý : 

a ) Tách số 19 ra 19 số 1 

Nhóm ở trên tử , mỗi số hạng cộng với 1 

=> ...

b )  Tách số 99 ở mẫu thành 99 số 1 

Nhóm ở dưới mẫu , mỗi số hạng cộng với 1 

=> ...

Chúc học tốt !!! 

9 tháng 8 2017

Biết làm câu số 3

Chứng tỏ rằng tổng bốn số tự nhiên liên tiếp là một số không chia hết cho 4:

Giải

4  = 22

=> Số chia hết cho 4 phải chia hết cho 2 và số chia hết cho 2 có tận cùng là: 0 , 2 , 4 , 6 , 8

Gọi 4 số tự nhiên lần lượt: a , b , c ,d 

Ta có:

a + b + c + d = ..............................

Tới đây bí rồi! Gợi ý thôi! Đừng trách mình nhé

9 tháng 8 2017

Mình làm mấy câu trước nhé!

\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)

\(x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)=1\)

\(\Rightarrow x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)=1\)

\(\Rightarrow x-\left(\frac{1}{1}-\frac{1}{10}\right)=1\)

\(\Rightarrow x-\frac{9}{10}=1\Leftrightarrow x=1+\frac{9}{10}=\frac{19}{10}\)