K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

Đáp án B

TH1: 4 chữ số a, b, c , d khác nhau →  có C 9 4  số

TH2: Trong 4 chữ số a, b, c , d có 3 chữ số giống nhau  →  có 3 C 9 3  số

TH3: Trong 4 chữ số a, b, c , d có 2 chữ số giống nhau  →  có 2 C 9 2  số

TH4: TH1: 4 chữ số a, b, c , d giống nhau  →  có C 9 1  số

Vậy có tất cả C 9 4 + 3 C 9 3 + 2 C 9 2 + C 9 1 = 459 số cần tìm

10 tháng 10 2019

Chọn đáp án B

Phương pháp

Chia các TH sau:

TH1: a<b<c.

TH2: a=b<c.

TH3: a<b=c.

TH4: a=b=c.

Cách giải

Gọi số tự nhiên có 3 chữ số là a b c ¯  (0≤a,b,c≤9, a≠0).

=> S có 9.10.10=900 phần tử. Chọn ngẫu nhiên một số từ S => n(Ω)=900

Gọi A là biến cố: “Số được chọn thỏa mãn a≤b≤c”.

TH1: a<b<c. Chọn 3 số trong 9 số từ 1 đến 9, có duy nhất một cách xếp chúng theo thứ tự tăng dần từ trái qua phải nên TH này có C 9 3  số thỏa mãn.

TH2: a=b<c, có  C 9 2  số thỏa mãn.

TH3: a<b=c có  C 9 2  số thỏa mãn.

TH4: a=b=c có 9 số thỏa mãn.

⇒ n ( A ) = C 9 3 + 2 C 9 2 + 9 = 165

Vậy P ( A ) = 11 60 .

10 tháng 8 2019

Đáp án D.

Số cần lập có dạng:

a b ¯ a ; b ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; a < b .  

Với mỗi cách chọn 2 số từ các số đã cho ta được một số thõa mãn yêu cầu bài toán.

Do đó có C 9 2 = 36  số.

7 tháng 10 2019

Đáp án là D

12 tháng 1 2019

29 tháng 3 2019

Đáp án A

1 tháng 12 2017

Gọi số tự nhiên cần lập có dạng a b c d ¯ a , b , c , d ∈ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 .

Số cần lập chia hết cho 15 nên nó chia hết cho 3 và 5.

Số cần lập chia hết cho 5 nên ta có: d = 5 ⇒ d  có 1 cách chọn.

Số cần tìm có dạng: a b c 5 ¯ .

Số cần lập chia hết cho 3 nên a + b + c + 5 : 3 .

Chọn a có 9 cách chọn, chọn b có 9 cách chọn.

Có 3 cách chọn c.

Như vậy có: 9.9.3.1 = 243 cách chọn.

Vậy có 243 số thỏa mãn yêu cầu bài toán.

Chọn D.

25 tháng 3 2018

Đáp án là A.

Gọi số cần lập có dạng:  a 1 a 2 a 3 a 4 a 5 ¯

Chọn 2 số lẻ thuộc nhóm 1 ; 3 ; 5 ; 7 ⇒ C 4 2  

Chọn 3 số chẳn trong nhóm 0 ; 2 ; 4 ; 6 ⇒ C 4 3  

Hoán vị 2 nhóm trên có 5! cách

* Các số có số a 1 = 0  

Chọn 2 số lẻ thuộc nhóm 1 ; 3 ; 5 ; 7 ⇒ C 4 2  

Chọn 2 số chẳn trong nhóm 0 ; 2 ; 4 ; 6 ⇒ C 3 2  

Hoán vị 2 nhóm trên có 4! cách

Vậy các số cần tìm: C 4 2 . C 4 3 .5 ! − C 4 2 . C 3 2 .4 ! = 2448  số

29 tháng 7 2017

Chọn C

Gọi số cần tìm là a = a 1 a 2 a 3 a 4 a 5 ¯   a i ≠ 0  Do a ⋮ 3  nên a 1 + a 2 + a 3 + a 4 + a 5 ⋮ 3  

Nếu a 1 + a 2 + a 3 + a 4 ⋮  thì a 5 = 0 hoặc  a 5 = 3

Nếu a 1 + a 2 + a 3 + a 4  chia 3 dư 1 thì a 5 = 2 hoặc a 5 = 5 .

Nếu  a 1 + a 2 + a 3 + a 4  chia 3 dư 2 thì a 5 = 1 hoặc a 5 = 4 .

Như vậy, từ một số có 4 chữ số a 1 a 2 a 3 a 4  (các số được lấy từ tập A) sẽ tạo được 2 số tự nhiên có 5 chữ số thỏa mãn yêu cầu bài toán.

Dễ thấy từ các chữ số của tập A có thể lập được 5.6.6.6 = 1080 số tự nhiên có 4 chữ số.

Do đó từ các chữ số của tập A sẽ lập được 2.1080 = 2160 số chia hết cho 3 có 5 chữ số.

10 tháng 11 2018

Đáp án D

 Xét từng trường hợp: chữ số đầu tiên bằng 1, chữ số thứ hai bằng 1, chữ số thứ ba bằng 1.

Cách giải: Gọi số đó là   a b c d e →

- TH1: a=1

+ b có 7 cách chọn.

+ c có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có: 7.6.5.4=840 số

- TH2:b=1

+ a ≠ b , a ≠ 0  nên có 6 cách chọn.

+ c có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có: 6.6.5.4=720 số.

- TH3: c=1.

+ a ≠ c , a ≠ 0 nên có 6 cách chọn.

+ b có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có 6.6.5.4=720 số.

Vậy có tất cả 840+720+720=2280 số.