K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

\(\widehat{MBD}\) là góc tạo bởi tiếp tuyến BM và dây cung BD

\(\widehat{BAD}\) là góc nội tiếp chắn cung BD

Do đó: \(\widehat{MBD}=\widehat{BAD}\)

Xét ΔMBD và ΔMAB có

\(\widehat{MBD}=\widehat{MAB}\)

\(\widehat{BMD}\) chung

Do đó: ΔMBD đồng dạng với ΔMAB

=>\(\dfrac{MB}{MA}=\dfrac{MD}{MB}\)

=>\(MB^2=MA\cdot MD\left(1\right)\)

Xét (O) có

MB,MC là các tiếp tuyến

Do đó: MB=MC

=>M nằm trên đường trung trực của BC(2)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(3)

từ (2),(3) suy ra MO là đường trung trực của BC

=>MO\(\perp\)BC tại H

Xét ΔMBO vuông tại B có BH là đường cao

nên \(MH\cdot MO=MB^2\left(4\right)\)

Từ (1),(4) suy ra \(MH\cdot MO=MD\cdot MA\)

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:
1. Vì $MA, MB$ là tiếp tuyến của $(O)$ nên $MA\perp OA, MB\perp OB$.

Khi đó $\widehat{MAO}=\widehat{MBO}=90^0$

Tứ giác $MAOB$ có tổng 2 góc đối nhau $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$

$\Rightarrow MAOB$ là tứ giác nội tiếp.

$\Rightarrow M,A,O,B$ cùng thuộc 1 đường tròn.

2.

Có: $MA=MB, OA=OB$ nên $MO$ là trung trực của $AB$

$\Rightarrow MO\perp AB$ tại $C$.

Xét tam giác $MOB$ vuông tại $B$ có đường cao $BC$. Áp dụng hệ thức lượng trong tam giác vuông thì:

$MC.MO=MB^2(1)$

Xét tam giác $MQB$ và $MBD$ có:

$\widehat{M}$ chung

$\widehat{MBQ}=\widehat{MDB}$ (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)

$\Rightarrow \triangle MQB\sim \triangle MBD$ (g.g)

$\Rightarrow \frac{MQ}{MB}=\frac{MB}{MD}$

$\Rightarrow MQ.MD=MB^2(2)$

Từ $(1); (2)\Rightarrow MQ.MD=MC.MO$ 

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Hình vẽ:

29 tháng 12 2023

a: Xét tứ giác MAOB có

\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

b: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của BA(2)

Từ (1) và (2) suy ra MO là đường trung trực của BA

=>MO\(\perp\)BA tại C và C là trung điểm của AB

Xét ΔMAO vuông tại A có AC là đường cao

nên \(MC\cdot MO=MA^2\left(3\right)\)

Xét (O) có

ΔAQD nội tiếp

AD là đường kính

Do đó: ΔAQD vuông tại Q

=>QA\(\perp\)QD tại Q

=>AQ\(\perp\)DM tại Q

Xét ΔADM vuông tại A có AQ là đường cao

nên \(MQ\cdot MD=MA^2\left(4\right)\)

Từ (3) và (4) suy ra \(MC\cdot MO=MQ\cdot MD\)

8 tháng 5 2022

hổn biết :>

8 tháng 5 2022

:))