Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
a) Ta có \(OD=OB\) và \(D,B,C\in\left(O;R\right)\)
\(\Rightarrow\) tam giác BCD vuông và vuông tại C
\(\Rightarrow\widehat{DCB}=90^0\) hay \(CD\perp BC\)
Mặt khác \(OH\perp BH\left(gt\right)\)
\(\Rightarrow DC//OH\) mà \(H\in OA\) nên \(DC//OA\)
b) Ta có \(\Delta OCH=\Delta OBH\)
(cạnh huyền cạnh góc vuông)
\(\Rightarrow\widehat{COH}=\widehat{BOH}\) (2 góc tương ứng)
Lại có \(\Delta OCA=\Delta OBA\left(c.g.c\right)\)
\(\Rightarrow\widehat{OCA}=\widehat{OBA}\) (2 góc tương ứng)
mà \(\widehat{ABO}=90^0\) (AB là tiếp tuyến của (O))
nên \(\widehat{OCA}=\widehat{OBA}=90^0\)
và \(C\in AC;C\in\left(O;R\right)\)
\(\Rightarrow\) AC là tiếp tuyến của (O)
c) Ta có: HB = HC = BC : 2 = 24:2=12(cm)
và R = 15 (cm) nên Áp dụng hệ thức cạnh và đường cao trong tam giác vuông vào \(\Delta OAB\left(\widehat{OBA}=90^0\right)\)
thì AB = .... (cm)
Áp dụng định lí Py-ta-go vào 2 tam giác vuông OCB và BAH, ta được:
OH = 9 (cm); HA = ....(cm)
mà OA = OH + HA = 9+.....= ... (cm)
Vậy AB=....(cm); OA =....(cm)
cho mình xin hình đc ko ạ