K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: AB=BC

nên B nằm trên đường trung trực của AC(1)

Ta có: CD=CA

nên D nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra BD là đường trung trực của AC

a) Ta có: BA=BC(gt)

nên B nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DC(gt)

nên D nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AC

b) Xét ΔBAD và ΔBCD có 

BA=BC(gt)

BD chung

DA=DC(gt)

Do đó: ΔBAD=ΔBCD(c-c-c)

Suy ra: \(\widehat{BAD}=\widehat{BCD}\)(hai góc tương ứng)

mà \(\widehat{BAD}+\widehat{BCD}=190^0\)

nên \(\widehat{BAD}=\widehat{BCD}=\dfrac{190^0}{2}=95^0\)

a: BA=BC

DC=DA

=>BD là trung trực của AC

b: Xét ΔABD và ΔCBD có

BA=BC

BD chung

DA=DC

=>ΔABD=ΔCBD

=>góc BAD=góc BCD=(360-100-80)/2=90 độ

giúp mình bài này với!Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o a, Chứng minh AC là đường trung trực của BD.b, Tính góc B và góc D.Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=<C+<D2<C+<D2 và <AFB=<A+<B/2Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:a, △ABC và △EDC...
Đọc tiếp

giúp mình bài này với!

Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o 

a, Chứng minh AC là đường trung trực của BD.

b, Tính góc B và góc D.

Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=<C+<D2<C+<D2 và <AFB=<A+<B/2

Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:

a, △ABC và △EDC bằng nhau

b, AC là phân giác của góc A

Bài 5: Cho tứ giác ABCD biết số đo của các góc A,B,C,D tỉ lệ thuận với 5,8,13,10.

a, Tính số đo các góc của tứ giác ABCD.

b,Kéo dài hai cạnh AB và CD cắt nhau tại E, kéo dài hai cạnh AD và BC cắt nhau tại F. Hai tia phân giác của góc AED và góc AFB cắt nhau tại O. Phân giác góc AFB cắt cạnh CD VÀ AB lần lượt là M và N. CM: O là trung điểm đoạn MN.

1

Bài 1: 

a: Ta có: AB=AD

nên A nằm trên đường trung trực của BD(1)

Ta có: CB=CD
nên C nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AC là đường trung trực của BD

b: Xét ΔBAC và ΔDAC có 

AB=AD

AC chung

BC=DC

Do đó: ΔBAC=ΔDAC

Suy ra: \(\widehat{B}=\widehat{D}\)

=>\(\widehat{B}=\widehat{D}=\dfrac{200^0}{2}=100^0\)

giúp mình bài này với!Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o a, Chứng minh AC là đường trung trực của BD.b, Tính góc B và góc D.Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=\(\dfrac{ C+ D}{2}\) và <AFB=<A+<B/2Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:a, △ABC...
Đọc tiếp

giúp mình bài này với!

Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o 

a, Chứng minh AC là đường trung trực của BD.

b, Tính góc B và góc D.

Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=\(\dfrac{< C+< D}{2}\) và <AFB=<A+<B/2

Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:

a, △ABC và △EDC bằng nhau

b, AC là phân giác của góc A

Bài 5: Cho tứ giác ABCD biết số đo của các góc A,B,C,D tỉ lệ thuận với 5,8,13,10.

a, Tính số đo các góc của tứ giác ABCD.

b,Kéo dài hai cạnh AB và CD cắt nhau tại E, kéo dài hai cạnh AD và BC cắt nhau tại F. Hai tia phân giác của góc AED và góc AFB cắt nhau tại O. Phân giác góc AFB cắt cạnh CD VÀ AB lần lượt là M và N. CM: O là trung điểm đoạn MN.

  

1

a: Ta có: BA=BC

nên B nằm trên đường trung trực của AC(1)

ta có: DA=DC

nên D nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra BD là đường trung trực của AC
hay BD\(\perp\)AC

a: BA=BC

DC=DA

=>BD là trung trực của AC

b: Xét ΔBAD và ΔBCD có

BA=BC

DA=DC

BD chung

=>ΔBAD=ΔBCD
=>góc BAD=góc BCD=(360-100-80)/2=90 độ

a: Ta có: AB=AD

nên A nằm trên đường trung trực của BD(1)

Ta có: CB=CD

nên C nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AC là đường trung trực của BD

c: Xét ΔABI vuông tại I và ΔADI vuông tại I có

AB=AD

AI chung

Do đó; ΔABI=ΔADI