K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2023

a: Xét tứ giác EHOC có

\(\widehat{EHO}+\widehat{ECO}=90^0+90^0=180^0\)

=>EHOC là tứ giác nội tiếp

=>E,H,O,C cùng thuộc một đường tròn

b: Sửa đề: ΔABC vuông

Xét (O) có

ΔABC nội tiếp

AC là đường kính

Do đó: ΔABC vuông tại B

c: ΔABC vuông tại B

=>AB\(\perp\)BC

Ta có: AB\(\perp\)BC

OM\(\perp\)AB

Do đó: OM//BC

Ta có: \(\widehat{ECB}+\widehat{E}=90^0\)(ΔBCE vuông tại B)

\(\widehat{E}+\widehat{CAB}=90^0\)(ΔCAE vuông tại C)

Do đó: \(\widehat{ECB}=\widehat{CAB}\)

mà \(\widehat{CAB}=\widehat{OBH}\)(ΔOBA cân tại O)

và \(\widehat{OBH}=\widehat{OMB}\left(=90^0-\widehat{HOB}\right)\)

nên \(\widehat{ECB}=\widehat{OMB}\)

Xét ΔBEC vuông tại B và ΔBOM vuông tại B có

\(\widehat{BCE}=\widehat{BMO}\)

Do đó: ΔBEC đồng dạng với ΔBOM

=>\(\dfrac{BE}{BO}=\dfrac{BC}{BM}\)

=>\(BE\cdot BM=BC\cdot BO\)

26 tháng 12 2023

a: Xét tứ giác EHOC có

\(\widehat{EHO}+\widehat{ECO}=90^0+90^0=180^0\)

=>EHOC là tứ giác nội tiếp

=>E,H,O,C cùng thuộc một đường tròn

b: Ta có: ΔOAB cân tại O

mà OH là đường cao

nên H là trung điểm của AB

Xét ΔMAB có

MH là đường cao

MH là đường trung tuyến

Do đó: ΔMAB cân tại M

c: ΔABC vuông tại B

=>AB\(\perp\)BC

Ta có: AB\(\perp\)BC

OM\(\perp\)AB

Do đó: OM//BC

Ta có: \(\widehat{ECB}+\widehat{E}=90^0\)(ΔBCE vuông tại B)

\(\widehat{E}+\widehat{CAB}=90^0\)(ΔCAE vuông tại C)

Do đó: \(\widehat{ECB}=\widehat{CAB}\)

mà \(\widehat{CAB}=\widehat{OBH}\)(ΔOBA cân tại O)

và \(\widehat{OBH}=\widehat{OMB}\left(=90^0-\widehat{HOB}\right)\)

nên \(\widehat{ECB}=\widehat{OMB}\)

Xét ΔBEC vuông tại B và ΔBOM vuông tại B có

\(\widehat{BCE}=\widehat{BMO}\)

Do đó: ΔBEC đồng dạng với ΔBOM

=>\(\dfrac{BE}{BO}=\dfrac{BC}{BM}\)

=>\(BE\cdot BM=BC\cdot BO\)

NV
23 tháng 1

a. Em tự giải

b. 

\(\Delta OAB\) cân tại O (do \(OA=OB=R\), mà \(OH\) là đường vuông góc (do OH vuông góc AB)

\(\Rightarrow OH\) đồng thời là trung tuyến và trung trực của AB

Hay OM là trung trực của AB

\(\Rightarrow MA=MB\Rightarrow\Delta MAB\) cân tại M

c.

Do EC là tiếp tuyến tại C \(\Rightarrow EC\perp AC\)

MA là tiếp tuyến tại A \(\Rightarrow MA\perp AC\)

\(\Rightarrow EC||MA\Rightarrow\widehat{MAH}=\widehat{CEB}\) (so le trong)

Mà \(\widehat{MAH}=\widehat{MOA}\) (cùng phụ \(\widehat{AMH}\))

\(\Rightarrow\widehat{CEB}=\widehat{MOA}\)

Xét hai tam giác CEB và MOA có:

\(\left\{{}\begin{matrix}\widehat{CEB}=\widehat{MOA}\left(cmt\right)\\\widehat{CBE}=\widehat{MAO}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta CEB\sim\Delta MOA\left(g.g\right)\)

\(\Rightarrow\dfrac{BE}{OA}=\dfrac{BC}{AM}\Rightarrow BE.AM=BC.OA\)

Mà \(MA=MB\) (theo cm câu b) và \(OA=BO=R\)

\(\Rightarrow BE.BM=BC.BO\)

NV
23 tháng 1

loading...

a: Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay BC=2BI

21 tháng 11 2018

các bạn giúp mình với ạ .mình cám ơn

4 tháng 1 2021

Góc HCF sao lại bằng góc FCA vậy mn ???

a: Xét ΔOBA và ΔOCA có 

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)

hay AC là tiếp tuyến của (O)

b:

Xét (O) có

ΔBDC nội tiếp

BD là đường kính

Do đó: ΔBDC vuông tại C

Xét ΔOBA vuông tại B và ΔDCB vuông tại C có

\(\widehat{BOA}=\widehat{CDB}\)

Do đó: ΔOBA∼ΔDCB

Suy ra: \(\dfrac{OB}{DC}=\dfrac{OA}{BD}\)

hay \(DC\cdot OA=2\cdot R^2\)

10 tháng 1 2022

Mình cảm ơn ạ

 

6 tháng 12 2017

Câu c.

Gọi K là trung điểm của BH

Chỉ ra K là trực tâm của tam giác BMI

Chứng minh MK//EI

Chứng minh M là trung điểm của BE (t.c đường trung bình)