Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác EHOC có
\(\widehat{EHO}+\widehat{ECO}=90^0+90^0=180^0\)
=>EHOC là tứ giác nội tiếp
=>E,H,O,C cùng thuộc một đường tròn
b: Sửa đề: ΔABC vuông
Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
c: ΔABC vuông tại B
=>AB\(\perp\)BC
Ta có: AB\(\perp\)BC
OM\(\perp\)AB
Do đó: OM//BC
Ta có: \(\widehat{ECB}+\widehat{E}=90^0\)(ΔBCE vuông tại B)
\(\widehat{E}+\widehat{CAB}=90^0\)(ΔCAE vuông tại C)
Do đó: \(\widehat{ECB}=\widehat{CAB}\)
mà \(\widehat{CAB}=\widehat{OBH}\)(ΔOBA cân tại O)
và \(\widehat{OBH}=\widehat{OMB}\left(=90^0-\widehat{HOB}\right)\)
nên \(\widehat{ECB}=\widehat{OMB}\)
Xét ΔBEC vuông tại B và ΔBOM vuông tại B có
\(\widehat{BCE}=\widehat{BMO}\)
Do đó: ΔBEC đồng dạng với ΔBOM
=>\(\dfrac{BE}{BO}=\dfrac{BC}{BM}\)
=>\(BE\cdot BM=BC\cdot BO\)
a: Xét tứ giác EHOC có
\(\widehat{EHO}+\widehat{ECO}=90^0+90^0=180^0\)
=>EHOC là tứ giác nội tiếp
=>E,H,O,C cùng thuộc một đường tròn
b: Ta có: ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
Xét ΔMAB có
MH là đường cao
MH là đường trung tuyến
Do đó: ΔMAB cân tại M
c: ΔABC vuông tại B
=>AB\(\perp\)BC
Ta có: AB\(\perp\)BC
OM\(\perp\)AB
Do đó: OM//BC
Ta có: \(\widehat{ECB}+\widehat{E}=90^0\)(ΔBCE vuông tại B)
\(\widehat{E}+\widehat{CAB}=90^0\)(ΔCAE vuông tại C)
Do đó: \(\widehat{ECB}=\widehat{CAB}\)
mà \(\widehat{CAB}=\widehat{OBH}\)(ΔOBA cân tại O)
và \(\widehat{OBH}=\widehat{OMB}\left(=90^0-\widehat{HOB}\right)\)
nên \(\widehat{ECB}=\widehat{OMB}\)
Xét ΔBEC vuông tại B và ΔBOM vuông tại B có
\(\widehat{BCE}=\widehat{BMO}\)
Do đó: ΔBEC đồng dạng với ΔBOM
=>\(\dfrac{BE}{BO}=\dfrac{BC}{BM}\)
=>\(BE\cdot BM=BC\cdot BO\)
a. Em tự giải
b.
\(\Delta OAB\) cân tại O (do \(OA=OB=R\), mà \(OH\) là đường vuông góc (do OH vuông góc AB)
\(\Rightarrow OH\) đồng thời là trung tuyến và trung trực của AB
Hay OM là trung trực của AB
\(\Rightarrow MA=MB\Rightarrow\Delta MAB\) cân tại M
c.
Do EC là tiếp tuyến tại C \(\Rightarrow EC\perp AC\)
MA là tiếp tuyến tại A \(\Rightarrow MA\perp AC\)
\(\Rightarrow EC||MA\Rightarrow\widehat{MAH}=\widehat{CEB}\) (so le trong)
Mà \(\widehat{MAH}=\widehat{MOA}\) (cùng phụ \(\widehat{AMH}\))
\(\Rightarrow\widehat{CEB}=\widehat{MOA}\)
Xét hai tam giác CEB và MOA có:
\(\left\{{}\begin{matrix}\widehat{CEB}=\widehat{MOA}\left(cmt\right)\\\widehat{CBE}=\widehat{MAO}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta CEB\sim\Delta MOA\left(g.g\right)\)
\(\Rightarrow\dfrac{BE}{OA}=\dfrac{BC}{AM}\Rightarrow BE.AM=BC.OA\)
Mà \(MA=MB\) (theo cm câu b) và \(OA=BO=R\)
\(\Rightarrow BE.BM=BC.BO\)
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay BC=2BI
a: Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến của (O)
b:
Xét (O) có
ΔBDC nội tiếp
BD là đường kính
Do đó: ΔBDC vuông tại C
Xét ΔOBA vuông tại B và ΔDCB vuông tại C có
\(\widehat{BOA}=\widehat{CDB}\)
Do đó: ΔOBA∼ΔDCB
Suy ra: \(\dfrac{OB}{DC}=\dfrac{OA}{BD}\)
hay \(DC\cdot OA=2\cdot R^2\)
Câu c.
Gọi K là trung điểm của BH
Chỉ ra K là trực tâm của tam giác BMI
Chứng minh MK//EI
Chứng minh M là trung điểm của BE (t.c đường trung bình)