K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

a: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>ΔABC cân tại A

b: AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)BC tại trung điểm của BC

=>AO\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=OB\cdot OB=OB\cdot OC\)

 

30 tháng 11 2023

loading...

c: Xét (O) có

M,O,N thẳng hàng

=>MN là đường kính của (O)

OA là đường trung trực của BC(cmt)

=>OA\(\perp\)BC tại H và H là trung điểm của BC

\(\widehat{HCM}+\widehat{HMC}=90^0\)(ΔHMC vuông tại H)

\(\widehat{ACM}+\widehat{OCM}=\widehat{OCA}=90^0\)

mà \(\widehat{OCM}=\widehat{HMC}\)(ΔOMC cân tại O)

nên \(\widehat{HCM}=\widehat{ACM}\)

=>CM là phân giác của góc ACB(5)

Xét (O) có

ΔNCM nội tiếp

NM là đường kính

Do đó: ΔNCM vuông tại C

=>CM\(\perp\)CN(6)

Từ (5),(6) suy ra CN là phân giác góc ngoài tại đỉnh C của ΔACH

Xét ΔACH có CN là phân giác góc ngoài tại đỉnh C

nên \(\dfrac{CA}{CH}=\dfrac{NA}{NH}\left(7\right)\)

Xét ΔACH có CM là phân giác góc trong tại đỉnh C

nên \(\dfrac{CA}{CH}=\dfrac{MA}{MH}\left(8\right)\)

Từ (7) và (8) suy ra \(\dfrac{NA}{NH}=\dfrac{MA}{MH}\)

=>\(NA\cdot MH=NH\cdot MA\)

 

30 tháng 11 2023

c: Xét (O) có

M,O,N thẳng hàng

=>MN là đường kính của (O)

OA là đường trung trực của BC(cmt)

=>OA\(\perp\)BC tại H và H là trung điểm của BC

\(\widehat{HCM}+\widehat{HMC}=90^0\)(ΔHMC vuông tại H)

\(\widehat{ACM}+\widehat{OCM}=\widehat{OCA}=90^0\)

mà \(\widehat{OCM}=\widehat{HMC}\)(ΔOMC cân tại O)

nên \(\widehat{HCM}=\widehat{ACM}\)

=>CM là phân giác của góc ACB(5)

Xét (O) có

ΔNCM nội tiếp

NM là đường kính

Do đó: ΔNCM vuông tại C

=>CM\(\perp\)CN(6)

Từ (5),(6) suy ra CN là phân giác góc ngoài tại đỉnh C của ΔACH

Xét ΔACH có CN là phân giác góc ngoài tại đỉnh C

nên \(\dfrac{CA}{CH}=\dfrac{NA}{NH}\left(7\right)\)

Xét ΔACH có CM là phân giác góc trong tại đỉnh C

nên \(\dfrac{CA}{CH}=\dfrac{MA}{MH}\left(8\right)\)

Từ (7) và (8) suy ra \(\dfrac{NA}{NH}=\dfrac{MA}{MH}\)

=>\(NA\cdot MH=NH\cdot MA\)

 

17 tháng 11 2021

a)a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

+ ABAB là tia phân giác của góc HADHAD  

Suy ra: ˆDAB=ˆBAHDAB^=BAH^

+ ACAC là tia phân giác của góc HAEHAE

Suy ra: ˆHAC=ˆCAEHAC^=CAE^

Ta có: ˆHAD+ˆHAE=2(ˆBAH+ˆHAC)HAD^+HAE^=2(BAH^+HAC^)=2.ˆBAC=2.90∘=180∘=2.BAC^=2.90∘=180∘

Vậy ba điểm D,A,ED,A,E thẳng hàng.

b)b) Gọi MM là trung điểm của BCBC

Theo tính chất của tiếp tuyến, ta có: AD⊥BD;AE⊥CEAD⊥BD;AE⊥CE

Suy ra: BD//CEBD//CE

Vậy tứ giác BDECBDEC là hình thang.

Vì MM là trung điểm của BCBC và AA là trung điểm của DEDE (vì DE là đường kính đường tròn (A))

Nên MAMA là đường trung bình của hình thang BDECBDEC

Suy ra: MA//BD⇒MA⊥DEMA//BD⇒MA⊥DE (vì BD⊥DEBD⊥DE)

Trong tam giác vuông ABCABC có AM là đường trung tuyến nên ta có: MA=MB=MC=BC2MA=MB=MC=BC2

Suy ra MM là tâm đường tròn đường kính BCBC với MAMA là bán kính

Vậy DEDE là tiếp tuyến của đường tròn tâm MM đường kính BC.



 

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).a) cm: A,B,O,C cùng thuộc một đường tròn.b) cm: OA vuông BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.c) cm: BC trùng với tia phân giác của góc DHE.d) Từ D kẻ đường thẳng song song với BE, đường...
Đọc tiếp

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).

a) cm: A,B,O,C cùng thuộc một đường tròn.

b) cm: OA vuông BC tại H và OD= OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.

c) cm: BC trùng với tia phân giác của góc DHE.

d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, AC lần lượt tại M và N. cm: D là trung điểm MN.

Bài 2: Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O,R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc vs CD tại H.

a) cm: A,B,O,C cùng thuoojcj một đường tròn. Xác định tâm và bán kính của đường tròn đó.

b) cm: AO vuông góc vs BC. Cho biết R=15cm, BC=24cm. Tính AB, OA.

c) cm: BC là tia phân giác của góc ABH.

d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. cm: IH=IB.

0
17 tháng 5 2022

a. Ta có ON cắt BC tại I, I là trung điểm của BC, ON là bán kính ⇒ ON ⊥ BC tại I.

Xét △OCI và △OBI :

\(\hat{OIC}=\hat{OIB}=90^o\left(cmt\right)\)

\(IC=IB\left(gt\right)\)

OI chung.

\(\Rightarrow\Delta OCI=\Delta OBI\left(c.g.c\right)\)

⇒ \(\hat{IOC}=\hat{IOB}\) hay : \(\hat{NOC}=\hat{NOB}\Rightarrow\stackrel\frown{NC}=\stackrel\frown{NB}\)

Mà : \(\hat{NAB}\) hay \(\hat{DAB}\) nội tiếp chắn cung NB, \(\hat{NAC}\) hay \(\hat{DAC}\) nội tiếp chắn cung NC.

Vậy : \(\hat{DAC}=\hat{DAB}\) hay AD là phân giác của góc BAC.

 

b. \(\hat{MAB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (góc tạo bởi tia tiếp tuyến và dây cung).

\(\hat{ACB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (góc nội tiếp chắn cung AB).

\(\Rightarrow\hat{MAB}=\hat{ACB}\Leftrightarrow\hat{MAB}=\hat{ACM}\)

Xét △MAB và △MCA :

\(\hat{MAB}=\hat{ACM}\left(cmt\right)\)

\(\hat{M}\) chung

\(=> \Delta MAB \backsim \Delta MCA (g.g)\) \(\Rightarrow\dfrac{MA}{MC}=\dfrac{MB}{MA}\Leftrightarrow MA^2=MB.MC\left(a\right)\)

Mặt khác : \(\hat{DAB}=\hat{DAC}\left(cmt\right)\) và \(\hat{DCA}=\hat{MAB}\left(cmt\right)\)

Mà \(\hat{ADM}=\hat{DAC}+\hat{DCA}\) (tính chất góc ngoài của tam giác).

\(\Rightarrow\hat{ADM}=\hat{DAB}+\hat{MAB}\Leftrightarrow\hat{ADM}=\hat{MAD}\)

⇒ △ADM cân tại M ⇒ \(MA=MD\left(b\right)\)

Từ (a), (b) : Vậy : \(MD^2=MB.MC\left(đpcm\right)\)

19 tháng 12 2021

Mình chỉ biết làm câu a thôi nhé bạn 🙂🙂🙂.

a) Chứng minh OA vuông góc BC và OH.OA = R2
Xét (O) có:
✱ OB=OC (=R)
✱ AB=AC (tính chất 2 tiếp tuyến cắt nhau)
⇒ O,A  thuộc đường trung trực của BC.
⇒ OA là đường trung trực của BC.
⇒ OA ⊥ BC tại đường trung điểm H của BC.
Xét ΔABO vuông tại B có đường cao BH (cmt) có:
    OB2=OH.OA (hệ thức lượng) (1)
Mà OB=R (cmt) ⇒ OB2=R2 (2)
Từ (1) và (2) ⇒ OH.OA=R2