Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét $(O)$ có: $BC$ là dây cung
$I$ là trung điểm $BC$
$⇒OI ⊥BC$ (tính chất)
Xét $(O)$ có: $AM;AN$ là các tiếp tuyến của đường tròn
$⇒AM⊥OM;AN⊥ON;AM=AN$
Xét tứ giác $AMON$ có:
$\widehat{AMO}=\widehat{ANO}=90^o$
$⇒\widehat{AMO}+\widehat{ANO}=180^o$
$⇒$ Tứ giác $AMON$ nội tiếp (tổng 2 góc đối $=180^o$)
$⇒$ 4 điểm $A;M;O;N$ thuộc 1 đường tròn(1)
Lại có: $\widehat{AIO}=\widehat{ANO}=90^o$
$⇒\widehat{AIO}+\widehat{ANO}=180^o$
$⇒$ Tứ giác $AION$ nội tiếp (Tổng 2 góc đối $=180^o$)
hay 4 điểm $A;I;O;N$ thuộc 1 đường tròn (2)
Từ $(1)(2)⇒$ 5 điểm $A;I;O;M;N$ thuộc 1 đường tròn (đpcm)
b, $K$ sẽ là giao điểm của $MN$ và $AC$
5 điểm $A;I;O;M;N$ thuộc 1 đường tròn
$⇒$ Tứ giác $AMIN$ nội tiếp
$⇒\widehat{AIM}=\widehat{ANM}$ (các góc nội tiếp cùng chắn cung $AM$)
Ta có: $AM=AN⇒\triangle AMN$ cân tại $A$
$⇒\widehat{AMN}=\widehat{ANM}$
$⇒\widehat{AIM}=\widehat{AMN}$
hay $\widehat{AIM}=\widehat{AMK}$
Xét $\triangle AIM$ và $\triangle AMK$ có:
$\widehat{AIM}=\widehat{AMK}$
$\widehat{A}$ chung
$⇒\triangle AIM \backsim \triangle AMK(c.g.c)$
$⇒\dfrac{AI}{AM}=\widehat{AM}{AK}$
$ ⇒AK.AI=AM^2(3)$
Xét $(O)$ có: $\widehat{AMB}=\widehat{ACM}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $MB$)
Xét $\triangle AMB$ và $\triangle ACM$ có:
$\widehat{AMB}=\widehat{ACM}$
$\widehat{A}$ chung
$⇒\triangle AMB \backsim \triangle ACM(g.g)$
$⇒\dfrac{AM}{AC}=\dfrac{AB}{AM}$
Hay $AB.AC=AM^2(4)$
Từ $(3)(4)⇒AK.AI=AB.AC(đpcm)$
a: Xét (O) có
AM,AN là tiếp tuyến
Do đó: AM=AN và OA là phân giác của góc MON
Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
b: Ta có: \(\widehat{POA}+\widehat{MOA}=\widehat{MOP}=90^0\)
\(\widehat{PAO}+\widehat{NOA}=90^0\)(ΔNOA vuông tại N)
mà \(\widehat{MOA}=\widehat{NOA}\)(OA là phân giác của góc MON)
nên \(\widehat{POA}=\widehat{PAO}\)
=>ΔPAO cân tại P
c: Ta có: AM=AN
=>A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OA là đường trung trực của MN
=>OA\(\perp\)MN tại H
Xét ΔOMA vuông tại M có MH là đường cao
nên \(OH\cdot OA=OM^2=R^2\)
2 A K = 1 A B + 1 A C ⇔ 2 A B . A C = A K ( A B + A C ) ⇔ A B . A C = A K . A I
(Do AB+ AC = 2AI)
∆ABN đồng dạng với ∆ANC => AB.AC = AN2
∆AHK đồng dạng với ∆AIO => AK.AI = AH.AO
Tam giác ∆AMO vuông tại M có đường cao MH => AH.AO = AM2
=> AK.AI = AM2 . Do AN = AM => AB.AC = AK.AI
Ta có AM là tiếp tuyến (O)
=> tam giác OMA vuông ở M
mà MI vuông góc AO (tính chất 2 tiếp tuyến cắt nhau)
=> OM2=OI*OA(hệ thức lượng)
=>R2=OI*OA