Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc OBA+góc OCA=90+90=180 độ
=>ABOC nội tiếp
b: Xét(O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>M nằm trên đường trung trực của BC
mà M thuộc (O)
nên M là điểm chính giữa của cung CB
góc ABM+góc OBM=90 độ
góc CBM+góc OMB=90 độ
mà góc OBM=góc OMB
nên góc ABM=góc CBM
=>BM là phân giác của góc ABC
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
a, gọi i là tđ của AO=>iA=iO
xét tam giác OBA có
gócB =90
Bi là đường trung tuyến ứng với cạnh huyền OA=>Bi=Oi=Ai (1)
xét tam giác OCA có
góc C=90
Ci là đường tring tuyến ứng với cạnh huyền AO=>CI=AI=Oi (2)
từ (1)và(2) ta =>Ci=BI=AI=Oi
=> 4 điểm O,B,A,C cùng thuộc một đường tròn