Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
 I C B D O E
.Ta có :ICIC là tiếp tuyến của (O)
\(\Rightarrow\widehat{CIE}=\widehat{IBC}\)
\(\Rightarrow\)ΔICE∼ΔIBC(g.g)\(\Rightarrow\)
IEIC=ICIB→ICE^=IBC^→ΔICE∼ΔIBC(g.g)→IEIC=ICIB
\(\Rightarrow\)IC2=IE.IB→IC2=IE.IB
Ta có : BD//AC\(\Rightarrow\widehat{IAE}=\widehat{EDB}=\widehat{ABE}\)
\(\Rightarrow\)ΔAIE∼ΔBIA(g.g)\(\Rightarrow\)
AIBI=IEIA\(\Rightarrow\)
IA2=IB.IE→ΔAIE∼ΔBIA(g.g)→AIBI=IEIA→IA2=IB.IE
→IA2=IC2→IA=IC→I→IA2=IC2→IA=IC→I là trung điểm AC
Dễ có IC là tiếp tuyến của đường tròn nên IC2 = IB.IE (1)
Theo tính chất của góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung, ta có: ^EBA = ^BDA
Lại có: ^BDA = ^DAC (BD//AC, hai góc so le trong)
Từ đó suy ra ^EBA = ^DAC
∆AIE và ∆BIA có: ^AIB là góc chung, ^EBA = ^DAC (cmt) nên ∆AIE ~ ∆BIA (g.g)
=>\(\frac{IA}{IE}=\frac{IB}{IA}\Rightarrow IA^2=IB.IE\)(2)
Từ (1) và (2) suy ra IA2 = IC2 hay IA = IC
Vậy I là trung điểm của AC (đpcm)
a: ΔODE cân tại O có OI là trung tuyến
nên OI vuông góc DE
góc OIA+góc OBA=180 độ
=>OIAB nội tiếp
b: Xét ΔKCE và ΔKBC có
góc KCE=góc KBC
góc K chung
=>ΔKCE đồng dạng với ΔKBC
=>KC/KB=KE/KC
=>KC^2=KB*KE
a: ΔODE cân tại O
mà OM là trung tuyến
nên OM vuông góc DE
=>góc OMA=90 độ=góc OCA=góc OBA
=>O,A,B,M,C cùng thuộc 1 đường tròn
b: Xét ΔBSC và ΔCSD có
góc SBC=góc SCD
góc S chung
=>ΔBSC đồng dạng với ΔCSD
=>SB/CS=SC/SD
=>CS^2=SB*SD
góc DAS=gócEBD
=>góc DAS=góc ABD
=>ΔSAD đồng dạng với ΔSBA
=>SA/SB=SD/SA
=>SA^2=SB*SD=SC^2
=>SA=SC
c; BE//AC
=>EH/SA=BH/SC=HJ/JS
mà SA=SC
nênHB=EH
=>H,O,C thẳng hàng
( mấy cái cơ bản thì tự viết nhé )
a) góc MAO và góc MBO= 90 độ
xét tứ giác MAOB có góc MAO+MBO=180 độ
=> MAOB nội tiếp
b) Xét (O) có EB là tiếp tuyến của (O)
\(\Rightarrow\widehat{EBD}=\widehat{EAB}\left(=\frac{1}{2}sđ\widebat{DB}\right)\)
Xét tam giác EDB và tam giác EBA có:
\(\hept{\begin{cases}\widehat{AEB}chung\\\widehat{EBD}=\widehat{EAB}\left(cmt\right)\end{cases}\Rightarrow\Delta EDB~\Delta EBA\left(g-g\right)}\)
\(\Rightarrow\frac{BE}{DE}=\frac{AE}{BE}\)
\(\Rightarrow BE^2=AE.DE\left(1\right)\)
Vì \(AC//MB\Rightarrow\widehat{ACM}=\widehat{DME}\left(SLT\right)\)
Ta có: \(\hept{\begin{cases}\widehat{ACM}=\widehat{ABD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\\\widehat{ABD}=\widehat{MAD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\end{cases}\Rightarrow\widehat{ACM}=\widehat{MAD}}\)
\(\Rightarrow\widehat{DME}=\widehat{MAD}\)
Xét tam giác EMD và tam giác EAM có:
\(\hept{\begin{cases}\widehat{DME}=\widehat{MAD}\\\widehat{AME}chung\end{cases}}\Rightarrow\Delta EMD~\Delta EAM\left(g-g\right)\)
\(\Rightarrow\frac{ME}{DE}=\frac{AE}{ME}\)
\(\Rightarrow ME^2=DE.AE\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BE=ME\left(đpcm\right)\)
c) mai nốt :V
c) El à trung điểm MB;H là trung điểm AB
-> EH là đường trung bình tam giác MAB
=> EH// MA
=> góc EHB= góc MAB ( đồng vị )
Mà góc MAB = góc AKB ( = 1/2 số đo cung AB )
=> góc EHB= góc AKB
mà góc EHB+ góc IHB = 180 độ
=> góc AKB + góc IHB = 180 độ
=> BHIK nội tiếp
=> góc BHK= BIK mà góc BHK= 90 độ
=> góc BIK= 90 độ
=> AK vuông góc với BI