Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên thỏa mãn có dạng với a,b,c,d ∈ A và đôi một khác nhau.
TH1: d=0
Có 5 cách chọn a; 4 cách chọn b và 3 cách chọn c nên theo quy tắc nhân có 5.4.3 = 60 số.
TH2: d ≠ 0 ; d có 2 cách chọn là 2, 4
Khi đó có 4 cách chọn a( vì a khác 0 và khác d); có 4 cách chọn b và 3 cách chọn c.
Theo quy tắc nhân có: 2.4.4.3=96 số
Vậy có tất cả: 96 + 60 = 156 số.
Chọn C.
Đáp án B
Gọi số cần lập là a b c d
TH1: d = 0 có 5.4.3 = 60 số thỏa mãn
TH2: d = {2;4} có 2.4.4.3 = 96 số thỏa mãn
Vậy có 156 số
Xếp 1 và 2 cạnh nhau: \(2!=2\) cách
Chọn ra 3 chữ số còn lại từ 6 chữ số còn lại: \(C_6^3=20\)
Chọn ra 3 chữ số trong đó có chứa số 0: \(C_5^2=10\)
Coi cặp 12 như 1 số, kết hợp 3 số còn lại được 4 số, hoán vị chúng và loại trừ trường hợp 0 đứng đầu:
\(2.\left(20.4!-10.3!\right)=840\) số
Xếp số 1 và 2 cạnh nhau có \(2!=2\) cách
Coi cặp 12 như 1 số, kết hợp với 3 số còn lại được 4 số, hoán vị chúng có: \(4!=24\) cách
Vậy có \(2.24=48\) số thỏa mãn
Gọi số cần lập x = a b c d ; a,b,c,d ϵ {1,2,3,4,5,6,7} và a,b,c,d đôi một khác nhau.
Công việc ta cần thực hiện là lập số x thỏa mãn x là số chẵn nên d phải là số chẵn. Do đó để thực hiện công việc này ta thực hiện qua các công đoạn sau
Bước 1: Chọn d : Vì d là số chẵn nên d chỉ có thể là các số 2; 4; 6 nên d có 3 cách chọn.
Bước 2: Chọn a: Vì ta đã chọn d nên a chỉ có thể chọn một trong các số của tập {1,2,3,4,5,6,7}\{d} nên có 6 cách chọn a
Bước 3: Chọn b: Tương tự ta có 5 cách chọn b
Bước 4: Chọn c: Có 4 cách chọn.
Vậy theo quy tắc nhân có: 4.6.5.4=360 số thỏa yêu cầu bài toán.
Chọn đáp án A.
Đặt A = {1, 2, 3, 4, 5, 6}.
n(A) = 6.
có 720 số tự nhiên có 6 chữ số được lập từ các số trên
Việc lập các số chẵn là việc chọn các số có tận cùng bằng 2, 4 hoặc 6.
Gọi số cần lập là a b c d e f
+ Chọn f : Có 3 cách chọn (2 ; 4 hoặc 6)
+ Chọn e : Có 5 cách chọn (khác f).
+ Chọn d : Có 4 cách chọn (khác e và f).
+ Chọn c : Có 3 cách chọn (khác d, e và f).
+ Chọn b : Có 2 cách chọn (khác c, d, e và f).
+ Chọn a : Có 1 cách chọn (Chữ số còn lại).
⇒ Theo quy tắc nhân: Có 3 . 5 . 4 . 3 . 2 . 1 = 360 (cách chọn).
Vậy có 360 số chẵn, còn lại 720 – 360 = 360 số lẻ.
Đáp án A
Gọi số cần tìm có dạng
Chọn a : có 2 cách
Chọn b, c : có cách
Vậy có số.
Từ các chữ số {0, 3, 4, 5, 6, 7} có thể lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số khác nhau ?
Số cần tìm có dạng \(\overline{abcd}\left(a,b,c,d\in\left\{0;3;4;5;6;7\right\}\right)\)
TH1: \(d=0\)
a có 5 cách chọn
b có 4 cách chọn
c có 3 cách chọn
\(\Rightarrow\) Có \(3.4.5=60\) cách lập.
TH2: \(d\ne0\)
d có 2 cách chọn
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
\(\Rightarrow\) Có \(2.3.4.4=96\) cách lập.
Vậy có \(96+60=156\) cách lập.
Gọi số đó là \(\overline{abcd}\)
- Nếu d=0 \(\Rightarrow a;b;c\) có \(A_5^3\) cách chọn
- Nếu \(d\ne0\Rightarrow d\) có 2 cách chọn, a có 4 cách chọn, b có 4 cách chọn, c có 3 cách chọn \(\Rightarrow2.4.4.3\) cách
Tổng cộng có \(A_5^3+2.4.4.3=...\) số