K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

Đáp án B

Phương pháp: Xét các trường hợp:

TH1: a1 + a2 = a3 + a4 = a5 + a6 = 5

TH2: a1 + a2 = a3 + a4 = a5 + a6 = 6

TH3: a1 + a2 = a3 + a4 = a5 + a6 = 7

Cách giải:

TH1: a1 + a2 = a3 + a4 = a5 + a6 = 5, ta có 0 + 5 = 1 + 4 = 2 + 3

- Nếu (a1;a2) = (0;5) => có 1 cách chọn (a1a2)

Có 2 cách chọn (a3a4), 2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.

Tương tự (a5a6) có 2 cách chọn.

=> Có 8 số thỏa mãn.

- Nếu (a1;a2) ↓ (0;5) => có 2 cách chọn (a1a2), 2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.

Có 2 cách chọn (a3a4), 2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.

Tương tự (a5a6) có 2 cách chọn.

=> Có 32 số thỏa mãn.

Vậy TH1 có: 8 + 32 = 40 số thỏa mãn.

TH2: a1 + a2 = a3 + a4 = a5 + a6 = 6, ta có 0 + 6 = 1 + 5 = 2 + 4 = 6.

Tương tự như TH1 có 40 số thỏa mãn.

TH3: a1 + a2 = a3 + a4 = a5 + a6 = 7, ta có 1 + 6 = 2 + 5 = 3 + 4 = 7

Có 3 cách chọn (a1a2), hai số này có thể đổi chỗ cho nhau nên có 6 cách chọn.

Tương tự có 4 cách chọn (a3a4) và 2 cách chọn (a5a6).

Vậy TH3 có 6.4.2 = 48 số thỏa mãn.

Vậy có tất cả 40 + 40 + 48 = 128 số có 6 chữ số khác nhau thỏa mãn a1 + a2 = a3 + a4 = a5 + a6

Để viết một số có 6 chữ số khác nhau bất kì có 6.6.5.4.3.2 = 4320 số.

Vậy P =  128 4320 = 4 135 .

30 tháng 10 2019

7 tháng 2 2019

22 tháng 10 2018

Chọn B

Số phần tử của tập hợp E là 

Vì 

 chia hết cho 3 nên khi lấy ra 6 chữ số thỏa điều kiện ta phải loại  ra một số chia hết cho 3. Ta có 3 trường hợp sau:

1) Trường hợp 1:

Loại bỏ số 0, khi đó a + b = c + d = e + f = 7

Bước 1: Chia ra làm 3 cặp số có tổng bằng 7 là : (1;6), (2;5), (3;4) có 1 cách chia.

Bước 2: Chọn a có 6 cách; chọn b có 1 cách; chọn c có 4 cách; chọn d có 1 cách; chọn e có 2 cách; chọn f có 1 cách: có 6.1.4.1.2.1 = 48 cách.

Trường hợp này có 48 số.

 

2) Trường hợp 2:

Loại bỏ số 3, khi đó a + b = c + d = e + f = 6

Bước 1: Chia ra làm 3 cặp số có tổng bằng 6 là : (0;6), (1;5), (2;4) có 1 cách chia.

Bước 2: Chọn a có 5 cách (vì có số 0); chọn b có 1 cách; chọn c có 4 cách; chọn d  có 1 cách; chọn e có 2 cách; chọn f có 1 cách: có 5.1.4.1.2.1 = 40 cách.

 

Trường hợp này có 40 số.

3) Trường hợp 3:

 

Loại bỏ số 6, khi đó a + b = c + d = e + f = 5. Tương tự như trường hợp 2, có 40 số.

Vậy trong tập hợp E có tất cả 48 +  40 + 40 = 128 số có dạng a b c d e f ¯  sao cho  a + b = c + d = e + f

Xác suất cần tìm là: 

5 tháng 1 2020

Đáp án C.

Số cách lập số có 5 chữ số có 3 và 4 đứng cạnh nhau là 2(4.4.3.2) = 192 cách.

Số cách lập số có 6 chứ số đôi một khác nhau từ A là 5.5.4.3.2=600 cách

Suy ra xác suất cần tìm là  192 600   =   8 25

8 tháng 6 2019

NV
21 tháng 12 2022

1.

Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)

Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách

Tổng cộng: \(4.A_6^4\) cách

2.

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

a.

Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách

Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách

\(\Rightarrow A_6^4-A_5^3=300\) số

b.

Để số được lập là số chẵn \(\Rightarrow\) d chẵn

TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Tổng cộng: \(A_5^3+96=156\) số

Xác suất \(P=\dfrac{156}{300}=...\)

21 tháng 12 2022

cho e hỏi chữ "A" bấm máy sao

22 tháng 2 2019

Chọn C

Gọi x là số bi của hộp thứ nhất nên số bi ở hộp thứ hai là 20 - x )

Gọi a,b  lần lượt là số bi xanh hộp thứ nhất và số bi xanh ở hộp thứ hai.

Suy ra: 0 < a < x, 0 < b < 20 - x

Số cách lấy bi ở mỗi hộp là độc lập với nhau nên ta đặt:

+) Xác suất lấy một bi xanh ở hộp thứ nhất là  a x và ở hộp thứ hai là  b 20 - x

Với a, b, x là các số tự nhiên thỏa mãn 

+) Xác suất lấy được hai bi xanh 

Ta có 

Lập bảng thử từng giá trị

Khi đó, các giá trị của x là 6 hoặc 84

Ta lại có 

Do đó,  hoặc ngược lại

Vậy xác suất để lấy được hai viên bi đỏ là 

12 tháng 10 2021

Số tự nhiên có 6 chữ số có dạng: \(\overline{abcdef}\)

f có 3 cách chọn.

a có 5 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

e có 1 cách chọn.

Vậy lập được \(3.5.4.3.2=360\) số tự nhiên thỏa mãn yêu cầu.