Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Số cần lập có dạng a b c d ¯
trong đó a ; b ; c ; d ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6
trong đó d = 0 ; 5
TH1: d = 0 khi đó a,b,c có A 6 3 cách chọn và sắp xếp.
TH2: d = 0 khi đó a,b,c có 5.5.4 ( a # 0 ) cách chọn và sắp xếp
Theo quy tắc cộng có
A 6 3 + 5 . 5 . 4 = 220 số thỏa mãn yêu cầu bài toán
a. Gọi số đó là \(\overline{ab}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)
Theo quy tắc nhân ta có: \(5.5=25\) số
b. Gọi số đó là \(\overline{abc}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)
Có: \(5.5.4=100\) số
c. Gọi số đó là \(\overline{abcd}\)
Do số chẵn nên d chẵn
- TH1: \(d=0\) (1 cách chọn d)
a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow1.5.4.3=60\) số
- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn
d.
Gọi số đó là \(\overline{abcde}\)
Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)
a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách
\(\Rightarrow3.4.4.3.2=288\) số
a. Số số lập được: \(5.5=25\) số
b. \(5.5.4=100\) số
c. Gọi số đó là abcd
TH1: d=0 \(\Rightarrow abc\) có \(A_5^3=60\) cách
TH2: \(d\ne0\Rightarrow d\) có 2 cách, abc có \(4.4.3=48\)
Tổng cộng: \(60+2.48=156\) số
d. Gọi số đó là abcde
e có 3 cách chọn
abcd có \(4.4.3.2=96\) cách
Tổng cộng: \(3.96=288\) số
Ta có nên d ∈ {2;4;6;8}
·Với d=4; c=5, chọn a có 7 cách, chọn b có 6 cách nên có 7.6= 42 số thỏa mãn.
· Với d=2
1. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn.
2. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn
3. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
4. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
Như vậy với d=2 có 6+6+6+6=24 số thỏa mãn.
· Tương tự với d=6; d=8
Vậy có tất cả 42+3.24=114 số thỏa mãn.
Chọn B.
Chữ số cuối cùng bằng 0, các khả năng với 2 chữ số là
(1;2); (1;8); (4;5); (1;5); (2;4); (4;8).
Chữ số cuối cùng bằng 5, các khả năng xảy ra với 2 chữ số là
(1;0);(4;0);(1;3); (2;8);(3;4).
Hoán vị các bộ 2 chữ số không tồn tại số 0, như vậy có 6.2 + 2 + 3.2 = 20 số.
Chọn B.
Chữ số cuối cùng bằng 0, các khả năng với 2 chữ số hàng trăm và hàng chục là (1;2); (1;8); (4;5); (1;5); (2;4); (4;8).
Chữ số cuối cùng bằng 5, các khả năng xảy ra với 2 chữ số hàng trăm và hàng chục là (1;0);(4;0);(1;3);(2;8);(3;4).
Hoán vị các bộ 2 chữ số không tồn tại số 0, như vậy có 6.2+2+3.2=20 số.
Chọn B.
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
Đáp án : C
Gọi số cần tìm có dạng .
Vì chia hết cho 4 suy ra chia hết cho 4( Nhớ rằng 1 số tự nhiên chia hết cho 4 thì 2 chữ số tận cùng của số đó phải chia hết cho 4).
Khi đó .
TH: thì a có 5 cách chọn từ các số còn lại. The quy tắc nhân có 1.5= số thỏa mãn trong trường hợp này.
Tương tự với 9 trường hợp còn lại.
Suy ra có tất cả 5.10=50 số cần tìm.
Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là (1;2),(1;5),(1;8),(2;4),(4;5),(4;8). (0;1),(0;4),(1; 3),(2;5),(3;8)
Trường hợp này có 2!.6=12 số.
Chữ số cuối bằng 2 ta có các bộ (1;0),(4;0),(1; 3),(3;4),(5;8), hoán vị được
2!.3+2=8 số.
Chữ số cuối bằng 4 ta có các bộ (2;0),(2; 3),(3;5),(3;8), hoán vị được 2!.3+1=7 số.
Chữ số cuối bằng 8 ta có các bộ (0;1),(0;4),(1; 3),(2;5),(3;4) hoán vị được 2!.3+2=8 số.
Kết hợp lại ta có 12+8+7+8= 35 số.
Chọn C
Đáp án C
Trường hợp 1. Số đó có dạng a 1 a 2 0 ¯ chọn a 1 a 2 ¯ có A 5 2 cách nên có A 5 2 số thỏa mãn.
Trường hợp 2. Số đó có dạng a 1 a 2 5 ¯ chọn a 1 có 4 cách, chọn a 2 có 4 cách nên có 4.4 số thỏa mãn
Do đó có A 5 2 + 4 . 4 = 36 số thỏa mãn