K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2021

Mình chưa vẽ hình nhưng mà câu c bạn có sai không? Tại vì bạn ghi thế thì có khác gì chứng minh AK=AD đâu. Bạn xem lại nhá 

4 tháng 5 2021

\(\frac{2}{AK}=\frac{1}{AD}+\frac{1}{AE}\) nhá

14 tháng 2 2020

A B C D E K I O H

14 tháng 2 2020

Bo de \(AD.AE=AC^2\) (ban tu chung minh nha , cu tam giac dong dang la ra )

xet \(AD+AE=AD+DH+AD+HE=AH+AD+DH=2AH\)

=> \(\frac{1}{AD}+\frac{1}{AE}=\frac{AD+AE}{AD.AE}=\frac{2AH}{AC^2}\) (1)

ta phai cm \(\frac{2AH}{AC^2}=\frac{2}{AK}\Leftrightarrow AH.AK=AC^2\) (2)

do H la trung diem DE => \(OH\perp DE=>\widehat{ABO}=\widehat{AHO}=\widehat{ACO}=90^0\)

=> A,B,O,H,C thuoc duong tron duong kinh AO

=> \(\widehat{AHC}=\widehat{ABC}\left(\frac{1}{2}sd\widebat{AC}\right)\)

ma \(\widehat{ABC}=\widehat{ACK}\) tinh chat 2 tiep tuyen cat nhau

=> \(\widehat{ACK}=\widehat{AHC}\) lai co \(\widehat{CAK}=\widehat{HAC}\)

=> \(\Delta AKC\approx\Delta ACH\left(g-g\right)\)

=> \(\frac{AK}{AC}=\frac{AC}{AH}\Leftrightarrow AK.AH=AC^2\) (3)

Tu (1),(2),(3) ta co dpcm

a: Xét tứ giác OBAC có

góc OBA+góc OCA=180 độ

nên OBAC là tứ giác nội tiêp

Tâm là trung điểm của OA

b: Xét tứ giác OHAC có

góc OHA+góc OCA=180 độ

=>OHAC là tứ giác nội tiếp

=>góc CHA=góc AOC

Xét tứ giác OHBA có

góc OHA=góc OBA=90 độ

nên OHBA là tứ giác nội tiếp

=>góc BHA=góc BOA=góc COA=góc CHA

=>HA là phân giác của góc BHC

a: ΔODE cân tại O có OI là trung tuyến

nên OI vuông góc DE

góc OIA=góc OBA=90 độ

=>OIBA nội tiếp

b: Xét (O) có

AC,AB là tiếp tuyến

=>AC=AB

mà OB=OC

nên OA là trung trực của BC

=>BC vuông góc OA tại H

=>AH*AO=AB^2

Xét ΔABE và ΔADB có

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB/AD=AE/AB

=>AB^2=AD*AE=AH*AO

a: Xét tứ giác OIBA có \(\widehat{OIA}=\widehat{OBA}=90^0\)

nên OIBA là tứ giác nội tiếp

b: Xét ΔACD và ΔAEC có 

\(\widehat{ACD}=\widehat{AEC}\)

\(\widehat{DAC}\) chung

Do đó: ΔACD\(\sim\)ΔAEC
SUy ra: AC/AE=AD/AC
hay \(AC^2=AE\cdot AD\left(1\right)\)

c: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC
mà OB=OC

nên OA là đường trung trực của BC

Xét ΔOCA vuông tại C có CK là đường cao

nên \(AK\cdot AO=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AK\cdot AO=AD\cdot AE\)

hay AK/AE=AD/AO

Xét ΔAKD và ΔAEO có

AK/AE=AD/AO

góc KAD chung

DO đó: ΔAKD\(\sim\)ΔAEO

Suy ra: \(\widehat{AKD}=\widehat{AEO}\)