Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2x-y}{3x-y}+\frac{5y-x}{3x+y}\)
\(=\frac{\left(2x-y\right)\left(3x+y\right)+\left(5y-x\right)\left(3x-y\right)}{\left(3x-y\right)\left(3x+y\right)}\)
\(=\frac{3x^2+15xy-6y^2}{9x^2-y^2}\)
\(=\frac{3\left(x^2+5xy-2y^2\right)}{9x^2-y^2}\)
\(=\frac{3\left(10x^2+5xy-3y^2-9x^2+y^2\right)}{9x^2-y^2}\)
\(=-\frac{3\left(9x^2-y^2\right)}{9x^2-y^2}\)
= - 3 (đpcm)
~~~
\(A=\frac{1}{x}+\frac{1}{x+2}+\frac{x-2}{x^2+2x}\)
\(=\frac{x+2+x+x-2}{x^2+2x}\)
\(=\frac{3x}{x\left(x+2\right)}\)
\(=\frac{3}{x+2}\)
\(A\in Z\)
\(\Leftrightarrow3⋮x+2\)
\(\Leftrightarrow x+2\in\text{Ư}\left(3\right)=\left\{-3:-1;1;3\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)
Bài 2:
\(\dfrac{1}{x}+\dfrac{1}{x+2}+\dfrac{x-2}{x\left(x+2\right)}\)
\(=\dfrac{x+x+2+x-2}{x\left(x+2\right)}=\dfrac{3x}{x\left(x+2\right)}=\dfrac{3}{x+2}\)
Để 3/x+2 là số nguyên thì \(x+2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{-1;-3;1;-5\right\}\)
\(5xy\left(2x^3y^2-7xy+3y\right)=10x^4y^3-35x^2y^2+15xy^2\\ \left(-6x^6+15x^2-4x^4\right):3x^2=-2x^4+5-\dfrac{4}{3}x^2\\ \left(x^2-y^2-12x+36\right):\left(x+y-6\right)\\ =\left[\left(x-6\right)^2-y^2\right]:\left(x+y-6\right)\\ =\left(x-y-6\right)\left(x+y-6\right):\left(x+y-6\right)\\ =x-y-6\)
b)x^2+y^2=x+y+8
=>4x^2+4y^2-4x-4y=32
=>4x^2-4x+1+4y^2-4y+1=34
=>(2x-1)^2+(2y-1)^2=9+25=25+9
đến đây thì dễ rồi
y^2+2xy-3x-2=0
=>y^2+2xy+x^2=x^2+3x+2
=>(x+y)^2=(x+2)(x+1)
đến đây thì bn tự lm nha
2x+2xy=39
=> 2x(y+1)=39
:v đề thế m giải đi