K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{y-x}\cdot\sqrt{x^6\left(x-y\right)^2}\)

\(\dfrac{1}{y-x}\cdot x^3\cdot\left(x-y\right)\)

\(=-x^3\)

a: \(=\dfrac{\left(1-\sqrt{2}\right)^2}{1-\sqrt{2}}=1-\sqrt{2}\)

b: \(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{x-y}=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

d: \(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x-y}=\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

a: \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5}+1-\sqrt{5}+1\)

=2

c: \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)

d: \(\dfrac{y-2\sqrt{y}+1}{\sqrt{y}-1}=\sqrt{y}-1\)

bài 1:Giải các phương trình và hệ phương trình sau: a)căn(x+2)(x-y+3)=căn(y),x^2+(x+3)(2x-y+5)=x+16 b)căn(3x^2-6x-6)=3 căn(2-x)^5)+(7x-19)căn(2-x) c)x^2-x-4=2 căn(x-1)(1-x) d)x^3+xy^2-10y=0,x62=6y^2=10 e)x văn(2x-3)=3x-4 f)x+y+1/y=9/x, x+y-4/x=4y/x^2 Bài 2:Xét các số thực dương a,b,c thỏa mãn: abc=1. Tìm giá trị lớn nhất của biểu thức: T=a/(b^4+c^4+a)+b/(a^4+c^4+b)+c/(a^4+b^4+c) bài 3:Cho a,b là các số thực thỏa mãn các điều kiện sau...
Đọc tiếp

bài 1:Giải các phương trình và hệ phương trình sau:
a)căn(x+2)(x-y+3)=căn(y),x^2+(x+3)(2x-y+5)=x+16
b)căn(3x^2-6x-6)=3 căn(2-x)^5)+(7x-19)căn(2-x)
c)x^2-x-4=2 căn(x-1)(1-x)
d)x^3+xy^2-10y=0,x62=6y^2=10
e)x văn(2x-3)=3x-4
f)x+y+1/y=9/x, x+y-4/x=4y/x^2
Bài 2:Xét các số thực dương a,b,c thỏa mãn: abc=1. Tìm giá trị lớn nhất của biểu thức:
T=a/(b^4+c^4+a)+b/(a^4+c^4+b)+c/(a^4+b^4+c)
bài 3:Cho a,b là các số thực thỏa mãn các điều kiện sau đây:15b^2+20b+6=0,ab khác 1.15b^2+20b+6=0;ab khác 1.CMR:b^2/(ab^2-9(ab+1)^3)=6/2015
Bài 4: Tìm giá trị nhỏ nhất của hàm số:f(x)=|x-1|+2|x-2|+3|x-3|+4|x-4|
Bài 5: Cho 3 số thực dương x,y,z thỏa mãn:1/x^2+1/y^2+1/z^2=1. Tìm giá trị nhỏ nhất của biểu thức:
P=y^2z^2/x(y^2+z^2)+z^2x^2/y(z^2+x^2)+x^2y^2/z(x^2+y^2)
Bài 6:Tìm nghiệm nguyên của phương trình:x^2-2y(x-y)=2(x+1)
Bài 7:Cho ba số thực x,y,z thỏa mãn điều kiện:x+y+z=0, và xyz khác 0. Tính giá trị biểu thức:x^2/(y^2+z^2-x^2)+y^2/(z^2+x^2-y^2)+z^2/(x^2+y^2-z^2)
bài 8:Tìm các cặp số nguyên (x,y) thỏa mãn:2015(x^2+y^2)-2014(2xy+1)=25

@Akai Haruma

@học tốt toán lý hóa

@Toán ơi ta yêu toán lắm!

@Toán 9

@Người Đã từng là quán quân Toán quốc gia

@Yêu Toán

@Quản Trị Toán

0
12 tháng 11 2021

5: \(=\dfrac{1}{x-y}\cdot x^3\cdot\left(x-y\right)^2=x^3\left(x-y\right)\)

1) Ta có: \(\left\{{}\begin{matrix}2x-y=3\\x+y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=3\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-x=-1\end{matrix}\right.\)

Vậy: (x,y)=(1;-1)

2) Ta có: \(A=\dfrac{x+20}{x-4}+\dfrac{2}{\sqrt{x}+2}-\dfrac{6}{\sqrt{x}-2}\)

\(=\dfrac{x+20+2\left(\sqrt{x}-2\right)-6\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+20+2\sqrt{x}-4-6\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)

28 tháng 10 2021

\(=\dfrac{1}{y-x}\cdot x^3\cdot\left(x-y\right)=-x^3\)