Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{a}{\sqrt{a}}=\sqrt{a}\)
b, \(\frac{a}{\sqrt{ab}}=\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{ab}}{b}\)
c, \(\frac{x}{\sqrt{3x^3}}=\frac{x}{x\sqrt{3x}}=\frac{1}{\sqrt{3x}}=\frac{\sqrt{3x}}{3x}\)
d, \(\frac{4y^2}{\sqrt{2y^5}}=\frac{4y^2}{y^2\sqrt{2y}}=\frac{4}{\sqrt{2y}}=\frac{4\sqrt{2y}}{2y}=\frac{2\sqrt{2y}}{y}\)
a)\(\dfrac{a}{\sqrt{a}}=\dfrac{a\sqrt{a}}{a}=\sqrt{a}\) b) \(\dfrac{a}{\sqrt{ab}}=\dfrac{a\sqrt{ab}}{\left(\sqrt{ab}\right)^2}=\dfrac{a\sqrt{ab}}{ab}=\dfrac{\sqrt{ab}}{b}\) c) \(\dfrac{x}{\sqrt{3x^3}}=\dfrac{x\sqrt{3x}}{\sqrt{3x^3.\sqrt{3x}}}=\dfrac{x\sqrt{3x}}{\left(\sqrt{3x^2}\right)^2}=\dfrac{x\sqrt{3x}}{\left(3x^2\right)^2}=\dfrac{x\sqrt{3x}}{3x^2}=\dfrac{\sqrt{3x}}{3x}\)
\(\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}\cdot\sqrt{5}}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)
\(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{2\sqrt{2}+\sqrt{2}\cdot\sqrt{2}}{5\sqrt{2}}=\dfrac{\sqrt{2}\cdot\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)
\(\dfrac{y+b\sqrt{y}}{b\sqrt{y}}=\dfrac{\sqrt{y}\cdot\sqrt{y}+b\sqrt{y}}{b\sqrt{y}}=\dfrac{\sqrt{y}\left(\sqrt{y}+b\right)}{b\sqrt{y}}=\dfrac{\sqrt{y}+b}{y}\)
a, \(\dfrac{2}{\sqrt{5}-1}=\dfrac{2\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\dfrac{2\left(\sqrt{5}+1\right)}{5-1}=\dfrac{\sqrt{5}+1}{2}\)
b, \(\left\{{}\begin{matrix}x-y=4\\2x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{2}-y=4\\x=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{11}{2}\\y=-\dfrac{3}{2}\end{matrix}\right.\)
a,\(\dfrac{2}{\left(\sqrt{5}-1\right)}=\dfrac{2\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\dfrac{2\sqrt{5} +2}{5-1}=\dfrac{2\left(\sqrt{5}+1\right)}{4}=\dfrac{\sqrt{5}+1}{2}\)
b,\(\left\{{}\begin{matrix}x-y=4\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=4\\x=\dfrac{-3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-11}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất là (x;y)=\(\left(\dfrac{-3}{2};\dfrac{-11}{2}\right)\)
-Chúc bạn học tốt-
\(=\frac{6\sqrt{2}\left(3\sqrt{7}-5\sqrt{2}\right)}{2\left(3\sqrt{7}-5\sqrt{2}\right)}=\frac{6\sqrt{2}}{2}=3\sqrt{2}\)
Trước hết, ta cần tính giá trị của a và b trong G và H:
$$G^2 = \frac{1}{a+b} \Rightarrow a+b = \frac{1}{G^2}$$
$$H^2 = 4a - 4\sqrt{ab} + 4b = 4(\sqrt{a} - \sqrt{b})^2 \Rightarrow \sqrt{a} - \sqrt{b} = \frac{H}{2}$$
Từ đó, suy ra được:
$$\sqrt{a} + \sqrt{b} = \frac{1}{G}\sqrt{\frac{1}{G^2} + 4}$$
$$\Rightarrow 2\sqrt{a} = \frac{1}{G}\sqrt{\frac{1}{G^2} + 4} + H$$
$$\Rightarrow a = \left(\frac{1}{G}\sqrt{\frac{1}{G^2} + 4} + H\right)^2/4$$
$$\Rightarrow b = \left(\frac{1}{G}\sqrt{\frac{1}{G^2} + 4} - H\right)^2/4$$
Tiếp theo, ta tính giá trị của F:
$$F = 6\sqrt{3} + \sqrt{2} = 6\sqrt{3} + \sqrt{2}\frac{\sqrt{6}+\sqrt{2}}{2} = 6\sqrt{3} + 3\sqrt{2} + 3\sqrt{6}$$
Cuối cùng, ta tính giá trị của K:
$$K = 2xy\left(2\sqrt{x} + 3\sqrt{y}\right) = 2\sqrt{xy}(4\sqrt{x} + 6\sqrt{y})$$
Vậy, ta đã tính được giá trị của F, G, H và K.
\(\dfrac{2ab}{\sqrt{a}-\sqrt{b}}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)
\(\dfrac{1}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(\dfrac{3}{\sqrt{10}+\sqrt{7}}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}+\sqrt{7}\right)\left(\sqrt{10}-\sqrt{7}\right)}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{3}=\sqrt{10}-\sqrt{7}\)
\(\dfrac{2}{\sqrt{6}-\sqrt{5}}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)
Nhat Linh bị nhầm câu cuối:
\(\dfrac{y+b\sqrt{y}}{b.\sqrt{y}}=\dfrac{y\sqrt{y}+b.y}{b.y}=\dfrac{\sqrt{y}+b}{b}.\)
a) \(\dfrac{14}{2\sqrt{3}-\sqrt{5}}\)
\(=\dfrac{14\left(2\sqrt{3}+\sqrt{5}\right)}{\left(2\sqrt{3}-\sqrt{5}\right)\left(2\sqrt{3}+\sqrt{5}\right)}\)
\(=\dfrac{14\left(2\sqrt{3}+\sqrt{5}\right)}{\left(2\sqrt{3}\right)^2-\sqrt{5^2}}=\dfrac{14\left(2\sqrt{3}+\sqrt{5}\right)}{12-5}\)
\(=\dfrac{14\left(2\sqrt{3}+\sqrt{5}\right)}{7}=2\left(2\sqrt{3}+\sqrt{5}\right)\)
\(=4\sqrt{3}+2\sqrt{5}\)
b) \(\dfrac{x^2-y}{x-\sqrt{y}}=\dfrac{\left(x-\sqrt{y}\right)\left(x+\sqrt{y}\right)}{x-\sqrt{y}}=x+\sqrt{y}\)