Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng có dạng: \(y=kx-1\)
Phương trình hoành độ giao điểm: \(x^2+kx-1=0\)
Theo Viet: \(\left\{{}\begin{matrix}x_A+x_B=-k\\x_Ax_B=-1\end{matrix}\right.\) \(\Rightarrow x_A^2+x_B^2=k^2+2\)
\(A\left(x_A;kx_A-1\right);B\left(y_B;kx_B-1\right)\)
Ta có: \(OA^2+OB^2=x_A^2+\left(kx_A-1\right)^2+x_B^2+\left(kx_B-1\right)^2\)
\(=\left(x_A^2+x_B^2\right)\left(k^2+1\right)-2k\left(x_A+x_B\right)+2\)
\(=\left(k^2+2\right)\left(k^2+1\right)-2k.\left(-k\right)+2\)
\(=k^4+5k^2+4\) (1)
\(AB^2=\left(x_A-x_B\right)^2+\left(kx_A-kx_B\right)^2\)
\(=\left(k^2+1\right)\left[\left(x_A+x_B\right)^2-4x_Ax_B\right]\)
\(=\left(k^2+1\right)\left(k^2+4\right)=k^4+5k^2+4\) (2)
(1);(2) \(\Rightarrow OA^2+OB^2=AB^2\) hay tam giác OAB luôn vuông tại O
1: Tọa độ A là:
y=0 và 4x+m-3=0
=>x=(-m+3)/4 và y=0
=>OA=|m-3|/4
Tọa độ B là:
x=0 và y=m-3
=>OB=|m-3|
Theo đề, ta có: 1/2*(m-3)^2/4=9
=>(m-3)^2/4=18
=>(m-3)^2=72
=>\(m=\pm6\sqrt{2}+3\)
2:
PTHĐGĐ là:
x^2-4x-m+3=0
Δ=(-4)^2-4*(-m+3)=16+4m-12=4m+4
Để (P) cắt (d) tại hai điểm phân biệt thì 4m+4>0
=>m>-1
(4-x1)(x2-1)=2
=>4x2-4-x1x2+1=2
=>x2(x1+x2)-3-(-m+3)=2
=>x2*4-3+m-3=2
=>x2*4=2-m+6=8-m
=>x2=2-1/2m
=>x1=4-2+1/2m=1/2m+2
x1*x2=-m+3
=>-m+3=(1/2m+2)(2-1/2m)=4-1/4m^2
=>-m+3-4+1/4m^2=0
=>1/4m^2-m-1=0
=>m^2-4m-4=0
=>\(m=2\pm2\sqrt{2}\)
1. Thay x = 1 ; y = 4 vào đồ thị hàm số (P)
\(\Rightarrow4=1^2=1\) ( vô lí )
=> A ( \(1;4\) ) không thuộc đồ thị hàm số (P)
2) (d) đi qua A ( 1; 4 ) và có hệ số góc bằng k
=> 4 = k . 1
=> k = 4
=> Phương trình đường thẳng (d) là
y = 4x
a ) Với k = 2 , ta có (d) : y= 2x
Phương trình hoành độ giao điểm của (d) và (P) là
\(x^2=2x\Rightarrow x^2-2x=0\Rightarrow x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=2x=0\\x=2\Rightarrow y=2x=4\end{matrix}\right.\)
Vậy giao điểm của (d) và (P) là các điểm có tọa độ (0;0 ) và ( 2;4 )
b ) Ta có (d) : y = kx , luôn đi qua gốc tọa độ
(P) y = \(x^2\) luôn đi qua gốc tọa độ
=> Với mọi giá trị của k , đường thẳng (d) luôn cắt (P) y = x^2 ( tại gốc tọa độ )
1. Thay x = 1 ; y = 4 vào đồ thị hàm số (P)
⇒4=12=1⇒4=12=1 ( vô lí )
=> A ( 1;41;4 ) không thuộc đồ thị hàm số (P)
2) (d) đi qua A ( 1; 4 ) và có hệ số góc bằng k
=> 4 = k . 1
=> k = 4
=> Phương trình đường thẳng (d) là
y = 4x
a ) Với k = 2 , ta có (d) : y= 2x
Phương trình hoành độ giao điểm của (d) và (P) là
x2=2x⇒x2−2x=0⇒x(x−2)=0x2=2x⇒x2−2x=0⇒x(x−2)=0
⇒[x=0⇒y=2x=0x=2⇒y=2x=4⇒[x=0⇒y=2x=0x=2⇒y=2x=4
Vậy giao điểm của (d) và (P) là các điểm có tọa độ (0;0 ) và ( 2;4 )
b ) Ta có (d) : y = kx , luôn đi qua gốc tọa độ
(P) y = x2x2 luôn đi qua gốc tọa độ
=> Với mọi giá trị của k , đường thẳng (d) luôn cắt (P) y = x^2 ( tại gốc tọa độ )
a: Thay x=0 và y=-5 vào (d), ta được:
2(m+1)*0-m^2-4=-5
=>m^2+4=5
=>m=1 hoặc m=-1
b:
PTHĐGĐ là;
x^2-2(m+1)x+m^2+4=0
Δ=(2m+2)^2-4(m^2+4)
=4m^2+8m+4-4m^2-16=8m-12
Để PT có hai nghiệm phân biệt thì 8m-12>0
=>m>3/2
x1+x2=2m+2; x1x2=m^2+4
(2x1-1)(x2^2-2m*x2+m^2+3)=21
=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21
=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21
=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21
=>(2x1-1)(2x2-1)=21
=>4x1x2-2(x1+x2)+1=21
=>4(m^2+4)-2(2m+2)+1=21
=>4m^2+16-4m-4-20=0
=>4m^2-4m-8=0
=>(m-2)(m+1)=0
=>m=2(nhận) hoặc m=-1(loại)