\(\frac{3}{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 6 2020

\(\overrightarrow{AB}=\left(1;1\right)\Rightarrow AB=\sqrt{2}\Rightarrow d\left(C;AB\right)=\frac{2S}{AB}=\frac{3\sqrt{2}}{2}\)

Phương trình AB: \(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)

Theo tính chất trọng tâm: \(d\left(I;AB\right)=\frac{1}{3}d\left(C;AB\right)=\frac{\sqrt{2}}{2}\)

Do I thuộc d nên tọa độ có dạng: \(I\left(3a-8;a\right)\)

\(d\left(I;AB\right)=\frac{\sqrt{2}}{2}\Leftrightarrow\frac{\left|3a-8-a-5\right|}{\sqrt{1+\left(-1\right)^2}}=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left|2a-13\right|=1\Rightarrow\left[{}\begin{matrix}a=7\\a=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(13;7\right)\\I\left(10;6\right)\end{matrix}\right.\)

Gọi M là trung điểm AB \(\Rightarrow M\left(\frac{5}{2};-\frac{5}{2}\right)\Rightarrow\left[{}\begin{matrix}\overrightarrow{MI}=\left(\frac{21}{2};\frac{19}{2}\right)\\\overrightarrow{MI}=\left(\frac{15}{2};\frac{17}{2}\right)\end{matrix}\right.\)

\(\overrightarrow{MC}=3\overrightarrow{MI}\Rightarrow\left[{}\begin{matrix}C\left(34;26\right)\\C\left(25;23\right)\end{matrix}\right.\)

NV
9 tháng 3 2021

Gọi \(C\left(x;y\right)\) và G là trọng tâm tam giác

\(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x+5}{3}\\y_G=\dfrac{y-5}{3}\end{matrix}\right.\) \(\Rightarrow3\left(\dfrac{x+5}{3}\right)-\dfrac{y-5}{3}-8=0\)

\(\Leftrightarrow3x-y-4=0\) \(\Rightarrow y=3x-4\Rightarrow C\left(x;3x-4\right)\)

\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)

\(\Leftrightarrow\dfrac{3}{2}=\dfrac{1}{2}\left|5\left(3x-1\right)-\left(x-2\right)\right|\)

\(\Leftrightarrow x=...\)

15 tháng 5 2016

A 2 y -2 -2 4 B C x

Vì G là trọng tâm tam giác ABC, nên ta có :

\(\overrightarrow{MA}=3\overrightarrow{MG}\Leftrightarrow\left(x_A-1;y_A+1\right)=3\left(\frac{2}{3}-1;0+1\right)\Leftrightarrow\begin{cases}x_A-1=1\\y_A+1=3\end{cases}\)

                     \(\Leftrightarrow A\left(0;2\right)\)

Giả sử \(B\left(x_1;y_1\right);C\left(x_2;y_2\right)\)

Vì M là trung điểm của BC, nên ta có :

\(\begin{cases}x_1+x_2=2\\y_1+y_2=-2\end{cases}\)\(\Leftrightarrow\begin{cases}x_2=2-x_1\\y_2=-2-y_1\end{cases}\)

Vậy \(C\left(2-x_1;-2-y_1\right)\)

Ta có \(\overrightarrow{BA}=\left(-x_1;2-y_1\right);\overrightarrow{CA}=\left(x_1-2;y_1+4\right)\)

Vì \(\widehat{BAC}=90^0\) nên \(\overrightarrow{BA}.\overrightarrow{CA}=0\)

\(\Leftrightarrow-x_1\left(x_1-2\right)+9y_1+4\left(2-y_1\right)=0\)

\(\Leftrightarrow-x^2_1-y^2_1+2x_1-2y_1+8=0\)  (1)

Do AB = AC nên \(AB^2=AC^2\)

\(x^2_1+\left(y_1-2\right)^2=2\left(2-x_1\right)^2+\left(4-y_1\right)^2\)

\(\Leftrightarrow-4y_1+4=-4x_1+4+16+8y_1\)

\(\Leftrightarrow x_1=3y_1+4\)    (2)

Thay (2) vào (1) ta có : 

\(y^2_1+y_1=0\Leftrightarrow\begin{cases}y_1=0\\y_1=-2\end{cases}\)

Từ đó ta có :

\(B\left(4;0\right);C\left(-2;-2\right)\) hoặc \(B\left(-2;-2\right);C\left(4;0\right)\)

Tóm lại ta có : 

\(A\left(0;2\right);B\left(4;0\right);C\left(2;-2\right)\) là 3 đỉnh của tam giác cần tìm

(Tam giác kia vẫn là tam giác trên chỉ đổi B và C với nhau)

15 tháng 5 2016

Vì G là trọng tâm của tam giác ABC nên ta có :

\(\overrightarrow{MA}=3\overrightarrow{MG}\Leftrightarrow\left(x_A-1;y_A+1\right)=3\left(\frac{2}{3}-1;0+1\right)\Leftrightarrow\begin{cases}x_A-1=-1\\y_A+1=3\end{cases}\)

                     \(\Leftrightarrow A\left(0;2\right)\)

Ta thấy MA có hệ số góc

\(k=\frac{2-\left(-1\right)}{0-1}=-3\)

Vì \(BC\perp MA\) nên đường thẳng nối BC có hệ số góc là \(\frac{1}{3}\), do đó phương trình của nó là :

\(y=\frac{1}{3}\left(x-1\right)-1\Leftrightarrow x-3y-4=0\)

Mặt khác do :

\(MB=MC=MA=\sqrt{1^2+3^2}=\sqrt{10}\)

Vậy tọa độ của B, C thỏa mãn phương trình đường tròn tâm M, bán kính =\(\sqrt{10}\)

\(\left(x-1\right)^2+\left(y+1\right)^2=10\)

Vậy tọa độ của B, C là nghiệm của hệ phương trình :

\(\begin{cases}x-3y-4=0\\\left(x-1\right)^2+\left(y+1\right)^2=10\end{cases}\)

Giải hệ phương trình ta có các nghiệm (4;0) và (-2;2)

Vậy A(0;2);B(4;0);C(-2;-2) là 3 đỉnh của tam giác cần tìm

26 tháng 4 2017


A C B M G

a)Theo bài ra => Tam giác ABC vuông cân ở A

M(1;-1) là trung điểm BC và G\(\left(\dfrac{2}{3};0\right)\) là trọng tâm

=>\(\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AG}\)

Giả sử A có tọa độ (a;b)

=>\(\left\{{}\begin{matrix}1-a=\dfrac{2}{3}\left(\dfrac{2}{3}-a\right)\\-1-b=-\dfrac{2}{3}b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}\\b=-3\end{matrix}\right.\)\(\Rightarrow A\left(\dfrac{5}{3};-3\right)\)

b)Do tam giác ABC vuông cân ở A=>GM vuông góc với BC

Ta có: \(\overrightarrow{GM}=\left(\dfrac{1}{3};-1\right)\)=>VTPT của đường thẳng BC là: \(\overrightarrow{n}=\left(1;-3\right)\) có M(1;-1) thuộc BC

=>phương trình đường thẳng BC:

1(x-1)-3(y+1)=0

hay x-3y-4=0

=> phương trình tham số của BC:\(\left\{{}\begin{matrix}x=3t+4\\y=t\end{matrix}\right.\)

=> tồn tại số thực t để B(3t+4;t) thuộc đường thẳng BC

MB=MA(do tam giác ABC vuông cân ở A,M là trung điểm BC)

=>\(\overrightarrow{MB}^2=\overrightarrow{MA}^2\)

=>(3t+3)2+(t+1)2=\(\left(\dfrac{2}{3}\right)^2+\left(-2\right)^2=\dfrac{40}{9}\)

=> \(t=-\dfrac{1}{3}\)hoặc \(t=-\dfrac{5}{3}\)

TH1: \(t=-\dfrac{1}{3}\)=>B\(\left(3;-\dfrac{1}{3}\right)\) ,do M(1;-1) là trung điểm BC=>C\(\left(-1;-\dfrac{5}{3}\right)\)

TH2:\(t=-\dfrac{5}{3}\)=>B\(\left(-1;-\dfrac{5}{3}\right)\),do M(1;-1) là trung điểm BC=>C\(\left(3;-\dfrac{1}{3}\right)\)

c) Tam giác ABC vuông cân ở A=>M(1;-1) là tâm đường tròn ngoại tiếp và MA là bán kính=>R2=MA2=\(\dfrac{40}{9}\)

Phương trình đường tròn ngoại tiếp tam giác ABC:

(C): \(\left(x-1\right)^2+\left(y+1\right)^2=\dfrac{40}{9}\)

11 tháng 4 2016

Vì B thuộc đường thẳng (AB) nên \(B\left(a;1-2a\right)\)

Tương tự \(C\left(-2-4b;3b\right)\)

Ta có : \(\overrightarrow{MB}=\left(a-1;4-2a\right);\overrightarrow{MC}=\left(-3-4b;3b+3\right)\)

Ta có \(\left(AB\right)\cap\left(AC\right)=\left\{A\right\}\Rightarrow A\left(2;-3\right)\)

Vì B, M, C thẳng hàng, \(3MB=2MC\) nên ta có : \(3\overrightarrow{MB}=2\overrightarrow{MC}\) hoặc \(3\overrightarrow{MB}=-2\overrightarrow{MC}\)

- Trường hợp 1 : \(3\overrightarrow{MB}=2\overrightarrow{MC}\Rightarrow\begin{cases}3\left(a-1\right)=2\left(-3-4b\right)\\3\left(4-2a\right)=2\left(3b+3\right)\end{cases}\)\(\Rightarrow\begin{cases}a=\frac{11}{5}\\b=\frac{-6}{5}\end{cases}\)

                                                \(\Rightarrow B\left(\frac{11}{5};-\frac{17}{5}\right);C\left(\frac{11}{5};-\frac{18}{5}\right)\Rightarrow G\left(\frac{7}{3};\frac{10}{3}\right)\)

- Trường hợp 2 : \(3\overrightarrow{MB}=-2\overrightarrow{MC}\Rightarrow\begin{cases}3\left(a-1\right)=-2\left(-3-4b\right)\\3\left(4-2a\right)=-2\left(3b+3\right)\end{cases}\)\(\Rightarrow\begin{cases}a=3\\b=0\end{cases}\)

                                                \(\Rightarrow B\left(3;-5\right);C\left(-2;0\right)\Rightarrow G\left(1;\frac{-8}{3}\right)\)

Vậy có 2 điểm \(G\left(1;\frac{-8}{3}\right)\) và \(G\left(\frac{7}{3};\frac{10}{3}\right)\) thỏa mãn đề bài

 

NV
9 tháng 3 2021

Gọi C(x;y) \(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x+2}{3}\\y_G=\dfrac{y-6}{3}\end{matrix}\right.\) \(\Rightarrow3\left(\dfrac{x+2}{3}\right)-\dfrac{y-6}{3}+1=0\)

\(\Leftrightarrow3x-y+15=0\Rightarrow y=3x+15\Rightarrow C\left(x;3x+15\right)\)

\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)

\(\Leftrightarrow3=\dfrac{1}{2}\left|-2\left(3x+19\right)-2\left(x-2\right)\right|\)

\(\Rightarrow x=...\)

30 tháng 5 2017

Hỏi đáp Toán

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng