K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2019

Đáp án B

Phép tịnh tiến biến (d) thành chính nó là phép tịnh tiến theo vectơ chỉ phương  của (d)

v → ( 2019 ; − 2018 ) = k u → 2 k ; k m =>k 2019 2 => m = − 4046 2019

=>có một giá trị   m = − 4046 2019 để biến (d) thành chính nó

22 tháng 12 2017

Đáp án A

Phép tịnh tiến biến(d) thành chính nó là phép tịnh tiến theo vectơ chỉ phương v → của (d) : v → ( 2019 ; − 2018 ) = k u → = 0 ; k m =>m = 0

=>có một giá trị m = 0 để biến (d) thành chính nó

28 tháng 11 2017

Đáp án A

Phép tịnh tiến biến (d) thành chính nó là phép tịnh tiến theo vectơ chỉ phương  của (d)

v → ( 2019 ; − 2018 )  = k u →  = 2019 k ; k m => k = 1 m =  – 2018

=>có một giá trị m =   –   2018  để biến (d) thành chính nó

1 tháng 10 2019

Đáp án D

Để biến d thành chính nó, ta tịnh tiến d theo VTCP của nó.

28 tháng 3 2018

Chọn D

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

15.

Gọi $\overrightarrow{v}=(a,b)$

Theo bài ra ta có:

$T_{\overrightarrow{v}}(B)=A$

$\Leftrightarrow \overrightarrow{BA}=\overrightarrow{v}$

$\Leftrightarrow (-4,4)=\overrightarrow{v}$

AH
Akai Haruma
Giáo viên
8 tháng 10 2020

4.

Bạn nhớ tính chất sau: phép tịnh tiến theo vecto $\overrightarrow{v}$ biến đường thẳng thành chính nó khi và chỉ khi $\overrightarrow{v}$ là vecto chỉ phương của đường thẳng $d$.

Dễ thấy $\overrightarrow{u_d}=(1,2)$ nên $\overrightarrow{v}=(1,2)$. Đáp án C.

Giải theo cách thuần thông thường:

Gọi vecto cần tìm là $\overrightarrow{v}=(a,b)$

Gọi $M(x,2x+1)$ là điểm thuộc đường thẳng $d$

$M'(x',y')=T_{\overrightarrow{v}}(M)\in (d)$

\(\Rightarrow \left\{\begin{matrix} x'=x+a; y'=2x+1+b\\ 2x'-y'+1=0\end{matrix}\right.\)

\(\Rightarrow 2(x+a)-(2x+1+b)+1=0\)

\(\Leftrightarrow 2a=b\)

Vậy $\overrightarrow{v}=(1,2)$

5 tháng 1 2017

ĐÁP ÁN: A

18 tháng 1 2018

Đáp án A

NV
22 tháng 7 2020

4.

Để phép tịnh tiến theo \(\overrightarrow{v}\) biến d thành chính nó thì \(\overrightarrow{v}\) phải là 1 vecto chỉ phương của d

Khi đó \(\overrightarrow{v}=k\left(1;2\right)\) với k là số thực

5.

Đường tròn tâm \(I\left(2;1\right)\) bán kính \(R=4\)

Phép tịnh tiến theo \(\overrightarrow{v}\) biến đường tròn thành đường tròn tâm I' bán kính R=4

\(I'=T_{\overrightarrow{v}}\left(I\right)\Rightarrow\left\{{}\begin{matrix}x_{I'}=2+1=3\\y_{I'}=3+1=4\end{matrix}\right.\) \(\Rightarrow I'\left(3;4\right)\)

Phương trình đường tròn: \(\left(x-3\right)^2+\left(y-4\right)^2=16\)