K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2023

TH1 , 1 học sinh tốt , 4 học sinh còn lại 

\(C^1_7\times\left(C_{15}^4-C_{10}^4-C_5^4\right)\)

TH2 , 2 học sinh tốt , 3 học sinh còn lại

\(C_7^2\times\left(C_{15}^3-C_{10}^3-C_5^3\right)\)

TH3, 3 học sinh tốt , 2 học sinh còn lại

\(C_7^3\times\left(C_{15}^2-C_{10}^2-C_5^2\right)\)

TH4 , 4 học sinh tốt , 1 học sinh còn lại

\(C_7^4\times C_{15}^1\)

TH5 , 5 học sinh tốt

\(C_7^5\)

=> Số thỏa mãn là : \(17171\) cách chọn 

n(omega)=\(C^7_{18}\)

\(n\left(\overline{A}\right)=C^7_{13}+C^7_{11}+C^7_{12}\)

=>\(P\left(A\right)=1-\dfrac{2838}{31824}=\dfrac{4831}{5304}\)

2 tháng 5 2023

 Số cách chọn 7 em bất kì trong ba khối:  \(C|^7_{18}=31824\) (cách)

- Số cách chọn 7 em đi trong 1 khối:

                \(C^7_7=1\) (cách)

- Số cách chọn 7 em đi trong 2 khối:

+) 7 em trong khối 12 và 11:

       \(C^7_{13}-C^7_7=1715\) (cách)

+) 7 em trong khối 12 và 10:

       \(C^7_{12}-C^7_7=791\) (cách)

+) 7 em trong khối 11 và 10:

      \(C^7_{11}=330\) (cách)

 Số cách chọn 7 em đi có cả ba khối:

       31824 - 1 -1715 -  791 - 330 = 28987(cách)

NV
18 tháng 3 2023

Do 2 tổ này ko chia thứ tự nên ta chỉ cần chọn cho 1 tổ, tổ còn lại sẽ tự phù hợp tương ứng

Gọi tổ cần chọn là A

- A có 1 giỏi 2 khá: \(C_3^1.C_5^2.C_8^5\) cách

- A có 1 giỏi 3 khá: \(C_3^1.C_5^3.C_8^5\) cách

- A có 2 giỏi 2 khá: \(C_3^2.C_5^2.C_8^4\) cách

- A có 2 giỏi 3 khá: \(C_3^2.C_5^3.A_8^3\) cách

Cộng 4 trường hợp lại là được

18 tháng 3 2023

Anh ơi! Nếu chia thứ tự đề bảo thế nào vậy ạ anh

Số cách chọn là:

\(C^1_4\cdot C^2_5+C^2_4\cdot5+C^3_4=74\left(cách\right)\)

a: Số cách chọn là: \(C^3_{25}=2300\left(cách\right)\)

b: Số cách chọn là: \(C^1_{15}\cdot C^2_{24}=4140\left(cách\right)\)

 

a: Số cách chọn là \(C^3_{18}=816\left(cách\right)\)

b: SỐ cách chọn là 7*6*5=210 cách

c: SỐ cách chọn là 7*5+5*6+7*6=107 cách