K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

Không gian mẫu là số cách chọn ngẫu nhiên 3 viên bi từ hộp chứa 50 viên bi.

Suy ra số phần tử của không gian mẫu là .

Gọi A là biến cố “3 viên bi được chọn là một số chia hết cho 3 ’’.

Trong 50 viên bi được chia thành ba loại gồm: 16 viên bi có số chia hết cho 3; 17 viên bi có số chia cho 3 dư 1 và 17 viên bi còn lại có số chia cho 3 dư 2.

Để tìm số kết quả thuận lợi cho biến cố A, ta xét các trường hợp

●   Trường hợp 1. 3 viên bi được chọn cùng một loại, có  cách.

●   Trường hợp 2. 3 viên bi được chọn có mỗi viên mỗi loại, có  cách.

Suy ra số phần tử của biến cố A là .

Vậy xác suất cần tính 

Chọn B.

20 tháng 12 2016

đề nghị khi đăng câu hỏi nên ấn 1 lần, sau ns sẽ hiện ra, tốn S ==

23 tháng 12 2016

đề sai

phải là 46/57

22 tháng 3 2022

TL

Lần lấy 1: Xác suất để có bi tím: 10:30 = 1/3

Lần lấy 2: Xác suất để có bi tím: 9:29

Lần lấy 3: Xác suất để có bi tím: 8:28 = 2/7

=> Xác suất để có cả 3 bi tím: 1/3 x 9/29 x 2/7 = 18/609

Mình không chắc có đúng không, bạn kiểm tra hộ mình nhé

Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!

NV
14 tháng 11 2019

Câu 1:

Khong gian mẫu: \(C_{11}^3\)

Có 5 cặp bi cùng số, do đó có \(5\) cách chọn ra 1 cặp cùng số, viên còn lại có 9 cách chọn \(\Rightarrow\) có 45 cách chọn 3 viên có 2 viên cùng số (tất nhiên là ko thể 3 viên cùng số được)

Xác suất: \(P=\frac{C_{11}^3-45}{C_{11}^3}=\frac{8}{11}\)

Câu 2:

Không gian mẫu: \(9!\)

Xếp 4 bạn nam cạnh nhau và hoán vị, có \(4!\) cách

Coi 4 bạn nam này là 1 người, xếp hàng cùng 5 bạn nữ \(\Rightarrow\)\(6!\) cách hoán vị

Vậy có \(4!.6!\) cách

Xác suất: \(P=\frac{4!.6!}{9!}=\frac{1}{21}\)

NV
23 tháng 1 2024

Không gian mẫu: \(C_{27}^3\)

Chọn 1 quả cầu xanh: có 8 cách

Chọn quả cầu đỏ khác số so với quả xanh: 8 cách

Chọn quả vàng khác số so với 2 quả đã chọn trước đó: 8 cách

\(\Rightarrow8.8.8\) cách chọn thỏa mãn

Xác suất: \(P=\dfrac{8.8.8}{C_{27}^3}=...\)

4 tháng 10 2021

Theo mình nghĩ là chọn 4 viên bi cùng màu mà nhỉ

Tổng các cách chọn 4 bi đỏ, 4 bi xanh, 4 bi trắng, 4 bi vàng:

\(C_{10}^4+C_{25}^4+C_6^4+C_9^4=10977\) (cách)

4 tháng 3 2017

Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.

Suy ra số phần tử của không gian mẫu là .

Gọi A là biến cố 2 viên bi được lấy vừa khác màu vừa khác số .

●   Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi đỏ là 4.4=16 cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).

●   Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi vàng là 3.4=12cách.

●   Số cách lấy 2 viên bi gồm: 1 bi đỏ và 1 bi vàng là 3.3=9 cách.

Suy ra số phần tử của biến cố A là 16+12+9=37.

Vậy xác suất cần tính .

Chọn B.

NV
13 tháng 1 2024

Tổng các viên bi lẻ khi số số viên bi lẻ là lẻ

Do đó ta có các trường hợp: trong 6 viên có (1 lẻ 5 chẵn), (3 lẻ 3 chẵn), (5 lẻ 1 chẵn)

Được chọn từ 6 viên lẻ (1;3;5;7;9;11) và 5 viên chẵn (2;4;6;8;10)

Không gian mẫu: \(n\left(\Omega\right)=C_{11}^6\)

Số cách chọn thỏa mãn: \(n\left(A\right)=C_6^1.C_5^5+C_6^3.C_5^3+C_6^5.C_5^1\)

Xác suất: \(P=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=...\)

13 tháng 1 2024

Anh giải nhanh thật, mới xong câu kia lun =))