K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

Không gian mẫu là số cách chọn ngẫu nhiên 3 viên bi từ hộp chứa 50 viên bi.

Suy ra số phần tử của không gian mẫu là .

Gọi A là biến cố “3 viên bi được chọn là một số chia hết cho 3 ’’.

Trong 50 viên bi được chia thành ba loại gồm: 16 viên bi có số chia hết cho 3; 17 viên bi có số chia cho 3 dư 1 và 17 viên bi còn lại có số chia cho 3 dư 2.

Để tìm số kết quả thuận lợi cho biến cố A, ta xét các trường hợp

●   Trường hợp 1. 3 viên bi được chọn cùng một loại, có  cách.

●   Trường hợp 2. 3 viên bi được chọn có mỗi viên mỗi loại, có  cách.

Suy ra số phần tử của biến cố A là .

Vậy xác suất cần tính 

Chọn B.

NV
23 tháng 1 2024

Không gian mẫu: \(C_{27}^3\)

Chọn 1 quả cầu xanh: có 8 cách

Chọn quả cầu đỏ khác số so với quả xanh: 8 cách

Chọn quả vàng khác số so với 2 quả đã chọn trước đó: 8 cách

\(\Rightarrow8.8.8\) cách chọn thỏa mãn

Xác suất: \(P=\dfrac{8.8.8}{C_{27}^3}=...\)

4 tháng 3 2017

Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.

Suy ra số phần tử của không gian mẫu là .

Gọi A là biến cố 2 viên bi được lấy vừa khác màu vừa khác số .

●   Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi đỏ là 4.4=16 cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).

●   Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi vàng là 3.4=12cách.

●   Số cách lấy 2 viên bi gồm: 1 bi đỏ và 1 bi vàng là 3.3=9 cách.

Suy ra số phần tử của biến cố A là 16+12+9=37.

Vậy xác suất cần tính .

Chọn B.

NV
13 tháng 1 2024

Tổng các viên bi lẻ khi số số viên bi lẻ là lẻ

Do đó ta có các trường hợp: trong 6 viên có (1 lẻ 5 chẵn), (3 lẻ 3 chẵn), (5 lẻ 1 chẵn)

Được chọn từ 6 viên lẻ (1;3;5;7;9;11) và 5 viên chẵn (2;4;6;8;10)

Không gian mẫu: \(n\left(\Omega\right)=C_{11}^6\)

Số cách chọn thỏa mãn: \(n\left(A\right)=C_6^1.C_5^5+C_6^3.C_5^3+C_6^5.C_5^1\)

Xác suất: \(P=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=...\)

13 tháng 1 2024

Anh giải nhanh thật, mới xong câu kia lun =))

26 tháng 5 2019

Đáp án B

Có các cách chọn sau:

+) 1 bi đỏ, 1 bi vàng, 3 bi xanh, suy ra có  C 6 1 C 7 1 C 5 3 = 420 cách.

+) 2 bi đỏ, 2 bi vàng, 1 bi xanh, suy ra có  C 6 2 C 7 2 C 5 1 = 1575 cách.

Suy ra xác suất bằng  420 + 1575 C 18 5 = 95 408 .

4 tháng 10 2021

Theo mình nghĩ là chọn 4 viên bi cùng màu mà nhỉ

Tổng các cách chọn 4 bi đỏ, 4 bi xanh, 4 bi trắng, 4 bi vàng:

\(C_{10}^4+C_{25}^4+C_6^4+C_9^4=10977\) (cách)

5 tháng 1 2022

A:"6 bi đc chọn chỉ có 2 màu" ⇒n(Ω)=6!=720⇒n(Ω)=6!=720

Xảy ra các trường hợp:

+A1A1:"1 xanh, 1 đỏ". ⇒n1=C17⋅C18=56⇒n1=C71⋅C81=56

+A2:A2:"1 đỏ, 1 vàng" ⇒n2=C18⋅C19=72⇒n2=C81⋅C91=72

+A3:"1 xanh, 1 vàng" ⇒n3=C17⋅C19=63⇒n3=C71⋅C91=63

⇒n(A)=56+72+63=191⇒n(A)=56+72+63=191

⇒P(A)=n(A)n(Ω)=191720

NV
5 tháng 1 2022

Không gian mẫu: \(C_{24}^5\)

Có 2 trường hợp thỏa mãn yêu cầu: 1 đỏ 1 vàng 3 xanh hoặc 2 đỏ 2 vàng 1 xanh

\(\Rightarrow C_7^1.C_8^1.C_9^3+C_7^2.C_8^2.C_9^1\) cách chọn

Xác suất: \(P=\dfrac{C_7^1.C_8^1.C_9^3+C_7^2.C_8^2.C_9^1}{C_{24}^5}=...\)