Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia hình vuông thành 25 hình vuông cạnh 1/5
. Khi đó tồn tại một hình vuông nhỏ chứa ít nhất 5 điểm.
Các điểm này nằm trong một hình tròn bán kính bằng 1/7
#)Trả lời :
Chia hình vuông thành 25 hình vuông cạnh \(\frac{1}{5}\)
Khi đó tồn tại một hình vuông nhỏ chứa ít nhất 5 điểm
Các điểm này nằm trong một hình tròn bán kính \(\frac{1}{7}\)
P/s : Nguồn https://123doc.org/document/953913-bai-tap-to-hop-olympic-30-4.htm
Tham khảo nhé ^^
Gọi hình vuông đó là ABCD, E,F lần lượt là trung điểm của AD, CB
Gọi G,H là 2 điểm trên EF sao cho EG=KE=8cm
AG=GD=GB=HC=BE2+HE2>20
Kẻ 6 đường tròn tâm A,G,D,C,H,B bán kính 10cm
Suy ra không có 2 đường tròn nào cắt nhau
5 điểm cho sẵn
Nên sẽ tồn tại 1 đường tròn chứa không chứa 5 điểm đó. Gọi O là tâm đường tròn đó và O là điểm thỏa ycbt
Ta chia hình vuông đề cho thành 16 hình vuông nhỏ bằng nhau (như hình vẽ)
Ta được độ dài cạnh của hình vuông nhỏ là 1
Có 33 điểm đặt vào 16 hình vuông theo nguyên lí Dirichlet
Suy ra tồn tại một hình vuông nhỏ chứa ít nhất 3 điểm
Giả sử hình vuông nhỏ đó là: ABCD (AC cắt BD tại O)
Có \(OA=\frac{AC}{2}=\frac{\sqrt{AB^2+BC^2}}{2}=\frac{\sqrt{1^2+1^2}}{2}=\frac{\sqrt{2}}{2}\)\(\Rightarrow AC=BD=\sqrt{2}\)
Giả sử 3 điểm đó trùng với 3 trong 4 đỉnh bất kì của hình vuông ABCD thì phần chung của ba hình tròn chứa toàn bộ hình vuông và như vậy đã tồn tại 3 điểm thỏa mãn yêu cầu bài toán.
Nếu trong 3 điểm có điểm nằm bên trong hình vuông thì phần chung của ba hình tròn cũng chứa toàn bộ hình vuông và như vậy đã tồn tại 3 điểm thỏa mãn yêu cầu bài toán
KL: tồn tại 3 điểm trong các điểm đã cho thỏa mãn yêu cầu bài toán.