Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại thời điểm mà không có hai kì thủ nào có số trận đấu bằng nhau, khi đó số trận đấu của các kì thủ là:
\(0,1,2,3,...,9\).
Khi đó có kì thủ đã đấu với cả \(9\)kì thủ còn lại, giả sử đó là \(A_1\)đã đấu với \(A_2,A_3,...,A_{10}\), nhưng lại có kì thủ chưa đấu với kì thủ \(A_1\)(mâu thuẫn).
Do đó ta có đpcm.
Toán giải bằng cách lập PT: loại hai đội cùng thi đấu, mỗi người của đội này gặp một người của đội kia? | Yahoo Hỏi & Đáp
Gọi số cầu thủ đội 1 và 2 lần lượt là: a và b
1 cầu thủ đội 1 đấu với 1 cầu thủ đội 2, số trận là b
số cầu thủ đội 1 là a
=> tổng số ván đấu là: ab
=> ab=4(a+b)
=> ab chia hết cho 2
Mà ít nhất 1 đội có số cầu thủ lẻ
=> đội còn lại có số cầu thủ chẵn và chia hết cho 4, giả sử độ đó có a cầu thủ ⇒b là số lẻ
Ta có: ab=4(a+b)
⇔a(b-4)-4(b-4)=16
⇔(a-4)(b-4)=16
Vì a,b∈Z
⇒ a-4,b-4∈Z
⇒a-4,b-4 là nghiệm nguyên của 16
mà a chia hết cho 4 nên a-4 chia hết cho 4 ta xét các trương hợp:
+) \(\hept{\begin{cases}a-4=4\\b-4=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=8\\b=8\end{cases}}\)
(không thoả mãn b lẻ)
+ ) \(\hept{\begin{cases}a-4=8\\b-4=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=12\\b=6\end{cases}}\)
(không thoả mãn b lẻ)
+)\(\hept{\begin{cases}a-4=16\\b-4=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=20\\b=5\end{cases}}\)(thoả mãn)
Vậy mỗi đội có 20 và 5 cầu thủ
Thầy giáo cho bài khó v