K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 3 2021

Đường CN có pt là x-3y=0 hay x-y=0 vậy bạn?

5 tháng 5 2023

Để tìm tọa độ đỉnh B và điểm M, ta có thể sử dụng các thông tin sau:

M là trung điểm của BC, nghĩa là tọa độ của M bằng trung bình cộng của tọa độ của B và C.N là trung điểm của CD, nghĩa là tọa độ của C là (2, -2).Do ABCD là hình vuông nên độ dài các cạnh bằng nhau, suy ra AB = CD = BC = AD.Vì M có hoành độ nguyên, nên tọa độ của B và C cũng phải có hoành độ nguyên.

Từ đó, ta có thể tìm tọa độ của B như sau:

Đặt tọa độ của B là (x, y).Do AB = BC, suy ra x - 1 = 1 - y, hay x + y = 2.Do AB = CD = 2, suy ra tọa độ của A là (x - 1, y + 1) và tọa độ của D là (x + 1, y - 1).Vì đường thẳng AM có phương trình x+2y-2=0, nên điểm A nằm trên đường thẳng đó, tức là x - 2y + 2 = 0.Từ hai phương trình trên, ta giải hệ: x + y = 2 x - 2y + 2 = 0Giải hệ này ta được x = 2 và y = 0, suy ra tọa độ của B là (2, 0).

Tiếp theo, ta sẽ tìm tọa độ của M:

Đặt tọa độ của M là (p, q).Do M là trung điểm của BC, suy ra p = (x + r)/2 và q = (y + s)/2, với r, s lần lượt là hoành độ và tung độ của C.Ta đã biết tọa độ của C là (2, -2), suy ra r = 2 và s = -4.Từ AM có phương trình x+2y-2=0, suy ra p + 2q - 2 = 0.Với hoành độ nguyên của M, ta có thể thử các giá trị p = 1, 2, 3, ... và tính q tương ứng.Khi p = 2, ta có p + 2q - 2 = 2q = 2, suy ra q = 1.Vậy tọa độ của M là (2, 1).<đủ chi tiết luôn nhó>
9 tháng 4 2016

B A K H C E I D

Ta có \(\widehat{AHC}=\widehat{AEC}=90^0\) nên 4 điểm A, H, C, E cùng thuộc đường tròn đường kính AC.

Gọi I là giao điểm của AC và BD

Ta có \(\widehat{HIE}=2\widehat{HAE}=2\left(180^0-\widehat{BCD}\right)\)

Các tứ giác AKED, AKHB nội tiếp nên \(\widehat{EKD}=\widehat{EAD}\) và \(\widehat{BKH}=\widehat{BAH}\)

Do đó \(\widehat{HKE}=180^0-\widehat{AKD}-\overrightarrow{BKH}=180^0-\overrightarrow{EAD}-\overrightarrow{BAH}=2\overrightarrow{HAE}=2\left(180^0-\overrightarrow{BCD}\right)=\overrightarrow{HIE}\)

Vậy tứ giác HKIE nội tiếp. Do đó I thuộc đường tròn (C) ngoại tiếp tam giác HKE

- Gọi \(C\left(c;c-3\right)\in d\left(c>0\right)\Rightarrow I\left(\frac{c-2}{2};\frac{c-4}{2}\right)\)

Do I thuộc (C) nên có phương trình :

\(c^2-c-2=0\Leftrightarrow c=2\) V c=-1 (loại c=-1) Suy ra \(C\left(2;-1\right);I\left(0;-1\right)\)

- Điểm E, H nằm trên đường tròn đường kính AC và đường tròn (C) nên tọa độ thỏa mãn hệ phương trình :

\(\begin{cases}x^2+y^2+x+4y+3=0\\x^2+\left(y+1\right)^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x=0;y=-3\\x=-\frac{8}{5};y=-\frac{11}{2}\end{cases}\)

- Vì H có hoành độ âm nên \(H\left(-\frac{8}{5};-\frac{11}{5}\right);E\left(0;-3\right)\) Suy ra \(AB:x-y+1=0;BC:x-3y-5=0\)

Tọa độ B thỏa mãn \(\begin{cases}x-y+1=0\\x-3y-5=0\end{cases}\) \(\Leftrightarrow B\left(-4;-3\right)\Rightarrow\overrightarrow{BA}=\left(2;2\right);\overrightarrow{BC}=\left(6;2\right)\Rightarrow\overrightarrow{BA}.\overrightarrow{BC}=16>0\)

Vì \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D\left(4;1\right)\)

Vậy \(B\left(-4;-3\right);C\left(2;-1\right);D\left(4;1\right)\)

24 tháng 7 2016

cho mình hỏi vì sao góc HIE = 2 HAE

 

21 tháng 3 2021

undefined

20 tháng 3 2021

Phương trình đường thẳng qua O và song song AB có dạng: x−y=0

 Tọa độ M là nghiệm của hệ: {x+3y−6=0x−y=0 ⇒M(32;32)

Phương trình đường thẳng BC qua M, nhận (1;1) là 1 vtpt có dạng:

1(x−32)+1(y−32)=0⇔x+y−3=0

Tọa độ B là nghiệm của hệ: {x−y+5=0x+y−3=0 ⇒B

M là trung điểm BC  tọa độ C

O là trung điểm AC  tọa độ A

O là trung điểm BD 

NV
21 tháng 3 2021

I là trung điểm AC \(\Rightarrow C\left(2;-2\right)\)

\(\Rightarrow\overrightarrow{CM}=\left(2;-1\right)\Rightarrow\) đường thẳng BC có dạng:

\(1\left(x-2\right)+2\left(y+2\right)=0\Leftrightarrow x+2y+2=0\)

Đường thẳng AB qua A và vuông góc BC nên nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình AB:

\(2\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow2x-y+4=0\)

B là giao điểm AB và BC nên tọa độ là nghiệm:

\(\left\{{}\begin{matrix}x+2y+2=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(...\right)\)

I là trung điểm BD \(\Rightarrow\left\{{}\begin{matrix}x_D=2x_I-x_B=...\\y_D=2y_I-y_B=...\end{matrix}\right.\)