K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2019

Ta có  A B → = 2 ; −   2 B C → = 2 ; 2 C A → = −   4 ; 0 ⇒ A B = 2 2 + −   2 2 = 2 2 B C = 2 2 + 2 2 = 2 2 C A = −   4 2 + 0 2 = 4

Vậy chu vi P của tam giác ABC là P =AB + BC + CA  = 4 + ​ 4 2

 Chọn B.

28 tháng 7 2018

Tọa độ trọng tâm G x G ; y G  là x G = 1 − 2 + 5 3 = 4 3 y G = 3 + 4 + 3 3 = 10 3 .  

Chọn D.

17 tháng 7 2018

Gọi I(x, y). Ta có  A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .

Do I là tâm đường tròn ngoại tiếp tam giác ABC nên:

  I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2

⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 = x − 2 2 + 9 y = 1 ⇔ x = − 1 4 y = 1 .

Chọn B.

15 tháng 2 2019

19 tháng 8 2018

Ta có C ∈ O x nên C(c; 0) và  C A → = − 2 − c ; 4 C B → = 8 − c ; 4 .

Tam giác ABC vuông tại C nên  C A → . C B → = 0 ⇔ − 2 − c . 8 − c + 4.4 = 0

⇔ c 2 − 6 c = 0 ⇔ c = 6 → C 6 ; 0 c = 0 → C 0 ; 0 .  

Chọn B.

26 tháng 12 2018

Ta có C ∈ O x nên C(c, 0) và  C A → = − 2 − c ; 4 C B → = 8 − c ; 4 .

Tam giác ABC vuông tại C nên  C A → . C B → = 0 ⇔ − 2 − c . 8 − c + 4.4 = 0

⇔ c 2 − 6 c = 0 ⇔ c = 6 → C 6 ; 0 c = 0 → C 0 ; 0 .  

Chọn B.

11 tháng 9 2019

Gọi I(a; b) là tâm đường tròn ngoại tiếp tam giác ABC.

A I 2 = B I 2 A I 2 = C I 2 ⇔ a − 0 2 + b − 2 2 = a + 2 2 + b − 8 2 a − 0 2 + b − 2 2 = a + 3 2 + b − 1 2

⇔ a 2 + b 2 − 4 b + 4 = a 2 + 4 a + 4 + b 2 − 16 b + 64 a 2 + b 2 − 4 b + 4 = a 2 + 6 a + 9 + b 2 − 2 b + 1

4 a − 12 b = − 64 6 a + 2 b = − 6 ⇔ a − 3 b = − 16 3 a + b = − 3

⇔ a = − 5 2 b = 9 2

Chọn B.

18 tháng 9 2018

Gọi A ' x ; y . Ta có  A A ' → = x − 4 ; y − 3 B C → = −   5 ; −   15 B A ' → = x − 2 ; y − 7 .

Từ giả thiết, ta có  A A ' ⊥ B C B ,   A ' ,   C  thang hang ⇔ A A ' → . B C → = 0 1 B A ' → = k B C → 2 .

  1 ⇔ −   5 x − 4 − 15 y − 3 = 0 ⇔ x + 3 y = 13.  

  2 ⇔ x − 2 − 5 = y − 7 − 15 ⇔ 3 x − y = − 1.

Giải hệ x + 3 y = 13 3 x − y = −   1 ⇔ x = 1 y = 4    ⇒    A ' 1 ; 4 .  

Chọn C.

24 tháng 1 2017

Gọi A’ (x; y).

Ta có  A A ' → = x − 4 ; y − 3 B C → = −   5 ; −   15 B A ' → = x − 2 ; y − 7 .

Từ giả thiết, ta có  A A ' ⊥ B C B ,   A ' ,   C  thang hang ⇔ A A ' → . B C → = 0 1 B A ' → = k B C → 2 .

  1 ⇔ −   5 x − 4 − 15 y − 3 = 0 ⇔ x + 3 y = 13.  

  2 ⇔ x − 2 − 5 = y − 7 − 15 ⇔ 3 x − y = − 1.

Giải hệ x + 3 y = 13 3 x − y = −   1 ⇔ x = 1 y = 4    ⇒    A ' 1 ; 4 .  

Chọn C

NV
29 tháng 1 2021

1.

\(\overrightarrow{AB}=\left(2;-6\right)\Rightarrow AB=2\sqrt{10}\) \(\Rightarrow BC=AB.cosB=\sqrt{10}\)

Gọi \(C\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(x-1;y-2\right)\\\overrightarrow{BC}=\left(x-3;y+4\right)\end{matrix}\right.\)

Tam giác ABC vuông tại C và có \(BC=\sqrt{10}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{BC}=0\\BC^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-3\right)+\left(y-2\right)\left(y+4\right)=0\\\left(x-3\right)^2+\left(y+4\right)^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-4x+2y-5=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y-10=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)

\(\Rightarrow\left(3y+10\right)^2+y^2-6\left(3y+10\right)+8y+15=0\)

\(\Leftrightarrow2y^2+10y+11=0\)

\(\Leftrightarrow y=...\)

NV
29 tháng 1 2021

2.

Kẻ \(EF\perp BC\)

\(S_{ABC}=9S_{BDE}\Rightarrow AD.BC=9EF.BD\Rightarrow\dfrac{EF}{AD}=\dfrac{BC}{9BD}\)

Talet: \(\dfrac{EF}{AD}=\dfrac{BF}{BD}=\dfrac{BC}{9BD}\Rightarrow BC=9BF\)

Hệ thức lượng: \(BE^2=BF.BC=9BF^2\Rightarrow BE=3BF\)

\(\Rightarrow cosB=\dfrac{BF}{BE}=\dfrac{1}{3}\)

Gọi R là bán kính đường tròn ngoại tiếp ABC và \(r\) là bán kính đường tròn ngoại tiếp BDE

\(sinB=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=\dfrac{2\sqrt{2}}{3}\)

\(\Rightarrow r=\dfrac{DE}{2sinB}=\dfrac{3}{2}\) (định lý sin tam giác BDE)

Dễ dàng chứng minh 2 tam giác ABC và BDE đồng dạng (chung góc B và \(\widehat{A}=\widehat{BDE}\) vì cùng bù \(\widehat{CDE}\))

Mà \(S_{ABC}=9S_{BDE}\Rightarrow\) 2 tam giác đồng dạng tỉ số \(k=\sqrt{9}=3\)

\(\Rightarrow R=3r=\dfrac{9}{2}\)