K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

tui mới lớp 6 òi nha

si
 

31 tháng 12 2015

tick cho tui tròn 140 đi mà

16 tháng 12 2015

ờm, sách tui khác, v nen

16 tháng 12 2015

vậy nên tự túc chứ sao nữa -_-

30 tháng 12 2015

xin lỗi em mới học lớp 6 vô chtt tích nhé

chtt chưa học nâng cao hình7

16 tháng 12 2015

mk hok lớp 7 nhưng cô chưa dạy cái này

Câu 1:  Cho hàm số y = x3 – 2x2 + (1 – m)x + m  (1), m là số thực    1.     Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.    2.     Tìm m để đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ \(x\frac{2}{1}+x\frac{2}{2}+x\frac{3}{2}<4\)thỏa mãn điều kiện Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M và N lần lượt là trung điểm của các cạnh AB...
Đọc tiếp

Câu 1:  Cho hàm số y = x3 – 2x2 + (1 – m)x + m  (1), m là số thực

    1.     Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.

    2.     Tìm m để đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ 

\(x\frac{2}{1}+x\frac{2}{2}+x\frac{3}{2}<4\)thỏa mãn điều kiện 

Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M và N lần lượt là trung điểm của các cạnh AB và AD; H là giao điểm của CN và DM. Biết SH vuông góc với mặt phẳng (ABCD) và SH =\(a\sqrt{3}\). Tính thể tích khối chóp S.CDNM và khoảng cách giữa hai đường thẳng DM và SC theo a.

 

Câu 3:

1.  Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A có đỉnh A(6; 6), đường thẳng đi qua trung điểm của các cạnh AB và AC có phương trình x + y - 4 = 0. Tìm tọa độ các đỉnh B và C, biết điểm E(1; -3) nằm trên đường cao đi qua đỉnh C của tam giác đã cho.

 

0
1 tháng 11 2018

Giải 

Bạn cân hình cho vuông góc nha! Mình không cân được.

N A B M C E D

Hai tia AE và AC cùng thuộc nửa mặt phẳng có bờ là đường thẳng AB và \(\widehat{BAC}< \widehat{BAE}=90^o\)nên tia AC nằm giữa hai tia AB và AE .

Do đó :

\(\widehat{BAC}+\widehat{CAE}=\widehat{BAE}\)hay

\(\widehat{BAC}=90^o-\widehat{CAE}\left(1\right)\)

Tương tự ta cũng có :

\(\widehat{EAD}-90^o-\widehat{CAE}\left(2\right)\)

Từ (1) và (2) suy ra :

\(\widehat{BAC}=\widehat{EAD}\left(3\right)\)

Xét 2 tam giác ABC và EAD,chúng có : 

\(AB=AE\left(gt\right),\widehat{BAC}=\widehat{EAD}\left(theo\left(3\right)\right),AC=AD\left(gt\right)\)

Vậy \(\Delta ABC=\Delta AED\left(c.g.c\right)\)

b) Do 2 tam giác ABC và AED = nhau ta có :

\(BC=ED\&\widehat{C}=\widehat{D}\left(4\right)\)

Ta lại có \(CM=\frac{1}{2}BC;DN=\frac{1}{2}ED\)Vì M và N là trung điểm của BC và AD .

=> CM = AN

Hai tam giác AMC = AND có :

AC = AD (gt) \(\widehat{C}=\widehat{D}\left(theo\left(4\right)\right),CM=DN\left(theo\left(5\right)\right)\)

Vậy \(\Delta AMC=\Delta AND\left(c.g.c\right)\)