Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
Phương trình hoành độ giao điểm:
\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)
a. Khi \(m=-1\), (1) trở thành:
\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)
Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)
b.
\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m
Hay (d) cắt (P) tại 2 điểm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)
\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)
\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)
a: Phương trình hoành độ giao điểm là:
\(x^2=2mx+2m+8\)
=>\(x^2-2mx-2m-8=0\)(1)
Thay m=-4 vào (1), ta được:
\(x^2-2\cdot\left(-4\right)\cdot x-2\cdot\left(-4\right)-8=0\)
=>\(x^2+8x=0\)
=>x(x+8)=0
=>\(\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Thay x=0 vào (P), ta được:
\(y=0^2=0\)
Thay x=-8 vào (P), ta được:
\(y=x^2=\left(-8\right)^2=64\)
Vậy: (P) và (d) cắt nhau tại O(0;0) và A(-8;64)
b: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(-2m-8\right)\)
\(=4m^2+8m+32\)
\(=4m^2+8m+4+28=\left(2m+2\right)^2+28>=28>0\forall m\)
=>Phương trình (1)luôn có hai nghiệm phân biệt
=>(P) luôn cắt (d) tại hai điểm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1\cdot x_2=\dfrac{c}{a}=-2m-8\end{matrix}\right.\)
mà \(x_1+2x_2=2\) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+2x_2=2\\x_1+x_2=2m\\x_1\cdot x_2=-2m-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_2=2-2m\\x_1=2m-2+2m=4m-2\\x_1\cdot x_2=-2m-8\end{matrix}\right.\)
=>(2-2m)(4m-2)=-2m-8
=>\(8m-4-8m^2+4m=-2m-8\)
=>\(-8m^2+12m-4+2m+8=0\)
=>\(-8m^2+14m+4=0\)
=>\(-8m^2+16m-2m+4=0\)
=>-8m(m-2)-2(m-2)=0
=>(m-2)(-8m-2)=0
=>\(\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{4}\end{matrix}\right.\)
a. Em tự giải
b,
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=2mx+2m+8\Leftrightarrow x^2-2mx-2m-8=0\) (1)
\(\Delta'=m^2+2m+8=\left(m+1\right)^2+7>0;\forall m\)
\(\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb với mọi m hay (d) luôn cắt (P) tại 2 điểm pb.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2m-8\end{matrix}\right.\)
Kết hợp hệ thức Viet và đề bài ta được:
\(\left\{{}\begin{matrix}x_1+2x_2=2\\x_1+x_2=2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=-2m+2\\x_1=4m-2\\\end{matrix}\right.\)
Thế vào \(x_1x_2=-2m-8\)
\(\Rightarrow\left(4m-2\right)\left(-2m+2\right)=-2m-8\)
\(\Leftrightarrow8m^2-14m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{4}\end{matrix}\right.\)
a,bạn thay m = 2 vào (d), lập hoành độ tự tìm nhé
Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-mx-3=0\)
\(\Delta=m^2-4\left(-3\right)=m^2+12>0\)
Vậy pt luôn có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-3\end{matrix}\right.\)
Ta có \(\dfrac{x_1+x_2}{x_1x_2}=\dfrac{3}{2}\)Thay vào ta được
\(\dfrac{m}{-3}=\dfrac{3}{2}\Leftrightarrow m=-\dfrac{9}{2}\)
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>m=-4
b: PTHĐGĐ là;
1/2x^2-2x+m-1=0
=>x^2-4x+2m-2=0
Δ=(-4)^2-4(2m-2)
=16-8m+8=-8m+24
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
=>m<3
x1x2(y1+y2)+48=0
=>x1x2(x1^2+x2^2)+48=0
=>(2m-2)[4^2-2(2m-2)]+48=0
=>(2m-2)(16-4m+4)+48=0
=>(2m-2)*(20-4m)+48=0
=>40m-8m^2-40+8m+48=0
=>-8m^2+48m+8=0
=>m=3+căn 10 hoặc m=3-căn 10
a:
b: Khi m=2 thì (d): y=2x+3
Phương trình hoành độ giao điểm là;
\(x^2=2x+3\)
=>\(x^2-2x-3=0\)
=>(x-3)(x+1)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Khi x=3 thì \(y=3^2=9\)
Khi x=-1 thì \(y=\left(-1\right)^2=1\)
Vậy: (P) cắt (d) tại A(3;9); B(-1;1)
c: Phương trình hoành độ giao điểm là:
\(x^2=mx+3\)
=>\(x^2-mx-3=0\)
a=1; b=-m; c=-3
Vì \(a\cdot c=1\cdot\left(-3\right)=-3< 0\)
nên (P) luôn cắt (d) tại hai điểm phân biệt trái dấu
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\\x_1x_2=\dfrac{c}{a}=-3\end{matrix}\right.\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{3}{2}\)
=>\(\dfrac{x_1+x_2}{x_1x_2}=\dfrac{3}{2}\)
=>\(\dfrac{m}{-3}=\dfrac{3}{2}\)
=>\(m=-\dfrac{9}{2}\)