K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Thay x=2 và y=1 vào (d), ta được:

\(2m\cdot2+3-2m=1\)

=>2m+3=1

=>2m=-2

=>m=-1

2: Phương trình hoành độ giao điểm là:

\(x^2=2mx+3-2m\)

=>\(x^2-2mx+2m-3=0\)

\(\text{Δ}=\left(-2m\right)^2-4\left(2m-3\right)\)

\(=4m^2-8m+12=4m^2-8m+4+8\)

\(=\left(2m-2\right)^2+8>=8>0\forall m\)

=>(P) luôn cắt (d) tại hai điểm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1x_2=\dfrac{c}{a}=2m-3\end{matrix}\right.\)

Để x1,x2 là độ dài hai cạnh của một hình chữ nhật có độ dài đường chéo là \(\sqrt{14}\) thì \(x_1^2+x_2^2=\left(\sqrt{14}\right)^2=14\)

=>\(\left(x_1+x_2\right)^2-2x_2x_1=14\)

=>\(\left(2m\right)^2-2\left(2m-3\right)=14\)

=>\(4m^2-4m-8=0\)

=>\(m^2-m-2=0\)

=>(m-2)(m+1)=0

=>\(\left[{}\begin{matrix}m-2=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-1\end{matrix}\right.\)

23 tháng 5 2022

undefined

23 tháng 5 2022

17 tháng 4 2022

a) Để (d) đi qua điểm A(1;3) thì \(3=2m.1+5\Rightarrow2m=-2\Rightarrow m=-1\)

b) Xét phương trình hoành độ giao điểm: \(x^2=2mx+5\)

\(\Rightarrow x^2-2mx-5=0\left(I\right)\)

Ta có \(\Delta'=m^2+5>0,\forall m\) nên PT (I) luôn có 2 nghiệm phân biệt \(x_1,x_2\) với mọi \(m\)

Vậy (d) luôn cắt (P) tại hai điểm phân biệt.

c) Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-5\end{matrix}\right.\)

Để \(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow4m^2-2.\left(-5\right)=4\Leftrightarrow4m^2=-6\) (Vô lý)

Vậy không có m thỏa mãn ycbt.

Phương trình hoành độ giao điểm là:

\(x^2-3x-m^2+1=0\)

\(a=1;b=-3;c=-m^2+1\)

\(\text{Δ}=9-4\cdot1\cdot\left(-m^2+1\right)\)

\(=9+4m^2-4=4m^2+5>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

16 tháng 5 2022

Nguyễn Lê Phước Thịnh                                                         , mk cần bạn làm cái tìm m cơ!!!

a: y=mx+3

Thay x=1 và y=0 vào (d), ta được:

m+3=0

=>m=-3

b: PTHĐGĐ là:

x^2-mx-3=0

Vì a*c=-3<0

nên (P) luôn cắt (d) tại hai điểm phân biệt

|x1-x2|=2

=>\(\sqrt{\left(x_1-x_2\right)^2}=2\)

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

=>\(\sqrt{m^2-4\left(-3\right)}=2\)

=>m^2+12=4

=>m^2=-8(loại)

=>KO có m thỏa mãn đề bài

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m=-4

b: PTHĐGĐ là;

1/2x^2-2x+m-1=0

=>x^2-4x+2m-2=0

Δ=(-4)^2-4(2m-2)

=16-8m+8=-8m+24

Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0

=>m<3

x1x2(y1+y2)+48=0

=>x1x2(x1^2+x2^2)+48=0

=>(2m-2)[4^2-2(2m-2)]+48=0

=>(2m-2)(16-4m+4)+48=0

=>(2m-2)*(20-4m)+48=0

=>40m-8m^2-40+8m+48=0

=>-8m^2+48m+8=0

=>m=3+căn 10 hoặc m=3-căn 10

1 tháng 7 2021

m = 1

PTHĐGĐ là;
x^2-2mx-3+2m=0

Δ=(-2m)^2-4(2m-3)

=4m^2-8m+12

=4m^2-8m+4+8

=(2m-2)^2+8>0

=>(P) luôn cắt (d) tại hai điểm phân biệt

x1^2+x2^2=14

=>(x1+x2)^2-2x1x2=14

=>(2m)^2-2(2m-3)=14

=>4m^2-4m+6-14=0

=>4m^2-4m-8=0

=>m^2-m-2=0

=>(m-2)(m+1)=0

=>m=2 hoặc m=-1

PTHHĐGĐ là:

x^2-2x-m^2+2m=0

Δ=(-2)^2-4(-m^2+2m)

=4+4m^2+8m=(2m+2)^2

Để phương trình có hai nghiệm phân biệt thì 2m+2<>0

=>m<>-1

x1^2+2x2=3m

=>x1^2+x2(x1+x2)=3m

=>x1^2+x2^2+x1x2=3m

=>(x1+x2)^2-x1x2=3m

=>2^2-(-m^2+2m)=3m

=>4+m^2-2m-3m=0

=>m^2-5m+4=0

=>m=1 hoặc m=4

10 tháng 5 2023

sao 2x2 lại bằng x2(x1+x2) vậy ạ