Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Lấy $M(x,y)\in (d)$. $M'(x',y')=T_{\overrightarrow{v}}(M)$
\(\left\{\begin{matrix} x'-x=2\\ y'-y=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'-2\\ y=y'+1\end{matrix}\right.\)
Ảnh của $d$ qua phép tịnh tiến theo vecto $\overrightarrow{v}$ có dạng:
$3(x'-2)-2(y'+1)+1=0$
$\Leftrightarrow 3x'-2y'-7=0$
Câu 2:
$M(x,y)$ là 1 điểm thuộc đường tròn $(C)$.
Lấy $M'(x',y')$ là 1 điểm thuộc $(C')$ là ảnh của $(C)$ qua $\overrightarrow{v}$
Khi đó, $M'=T_{\overrightarrow{v}}(M)
\(\Rightarrow \left\{\begin{matrix} x'-x=-3\\ y'-y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'+3\\ y=y'-5\end{matrix}\right.\)
PTĐTr $(C')$ có dạng:
$(x'+3)^2+(y'-5)^2-4(x'+3)+6(y'-5)+5=0$
$\Leftrightarrow x'^2+y'^2+2x'-4y'-3=0$
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Câu 2:
\(\left(x+1\right)^2+\left(y-2\right)^2=9\)
=>R=3 và I(-1;2)
Tọa độ I' là:
x=-1+1=0 và y=2-2=0
=>Phương trình (C') là: x^2+y^2=9
Câu 3:
\(V_{\left(O;-2\right)}\left(C\right)=\left(C'\right)\)
\(x^2+y^2-2x-8=0\)
=>x^2-2x+1+y^2=9
=>(x-1)^2+y^2=9
=>R=3 và I(1;0)
Tọa độ I' là:
\(\left\{{}\begin{matrix}x=1\cdot\left(-2\right)=-2\\y=0\cdot\left(-2\right)=0\end{matrix}\right.\)
Độ dài R' là:
\(R=3\cdot\left|-2\right|=6\)
Tọa độ (C') là:
\(\left(x+2\right)^2+y^2=36\)
1.
Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0
Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d
Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)
\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)
Thay vào pt d' ta được:
\(a+a-4=0\Rightarrow a=2\)
\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)
\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)
2.
Gọi \(\overrightarrow{u}=\left(a;b\right)\)
Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d
Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)
Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)
Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)
Ta có:
\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)
\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)
Đường thẳng d thành đường thẳng d’ có phương trình được xác định bằng cách: Mỗi điểm M(x;y) ∈ d' là ảnh của 1 điểm M0(x0;y0) thuộc d qua phép tịnh tiến theo vecto u=(2;3), ta có:
\(\left\{{}\begin{matrix}M_0\left(x_0;y_0\right)\in d\\\overrightarrow{M_0M}=\overrightarrow{u}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2y_0+2=0\\x_0 =x-2\\y_0=y-3\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)-2\left(y-3\right)+2=0\Leftrightarrow x-2y+6=0\)
Đây là phương trình của d'