K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 6 2020

\(a=2;b=1\Rightarrow c=\sqrt{3}\)

\(\Rightarrow F_1F_2=2c=2\sqrt{3}\)

\(MF_1\perp MF_2\Rightarrow\Delta MF_1F_2\) vuông tại M

\(\Rightarrow MF_1^2+MF_2^2=F_1F_2^2=12\) (Pitago)

Ta có: \(\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\MF_1+MF_2=2a=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\\left(MF_1+MF_2\right)^2=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\MF_1^2+MF_2^2+2MF_1MF_2=16\end{matrix}\right.\)

\(\Rightarrow MF_1.MF_2=2\)

\(\Rightarrow S_{MF_1F_2}=\frac{1}{2}MF_1.MF_2=1\)

21 tháng 4 2021

Chu vi: \(P=F_1F_2+MF_1+MF_2=2c+2a=2\sqrt{a^2-b^2}+2a=2\sqrt{169-25}+2.13=50\)

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

7 tháng 5 2019

Đáp án B

+Phương trình chính tắc của elip có dạng:

Nên a= 4; b= 2

+Vì MF1= MF2 nên M thuộc đường trung trực của F1F2 chính là trục Oy

+ M là điểm thuộc (E)  nên M  là giao điểm của elip và trục Oy

Vậy . M1(0 ; 2) và M2(0; -2).

2 tháng 7 2020

(E) \(\frac{x^2}{16}+\frac{y^2}{4}=1\)

MF1 = MF2 => M thuộc đường trung trực của F1 F2 => M thuộc Oy 

=> M( 0; m ) 

Vì M thuộc E nên ta có: \(\frac{m^2}{4}=1\)=> m = 2 hoặc m = - 2

=> M(0; 2) hoặc M ( 0 ; -2)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

2 tháng 3 2017

Đáp án B

- Giả sử:

Theo giả thiết thì : c = 4 nên a2- b2= 16  (2)

(E) qua A  suy ra :

thay vào (2)  ta có:

M thuộc (E)

 

Theo tính chất của (E) ta có bán kính qua tiêu

Thay vào  ta có:

30 tháng 9 2019

Đáp án D

Phương trình chính tắc của elip có dạng:

Theo giải thiết ta có c = 4

Chu vi của tam giác MF1F2  bằng  18    nên

MF1+ MF2+ F1F2 = 2a+ 2c nên 2a+ 2c= 18

Mà c= 4 => a= 5