K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 10 2019

Ý của đề bài là điểm E nằm trên đoạn BC chứ không phải trên đường thẳng BC đúng không nhỉ?

Gọi \(E\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BE}=\left(x+3;y-6\right)\\\overrightarrow{EC}=\left(1-x;-2-y\right)\end{matrix}\right.\)

\(\overrightarrow{BE}=2\overrightarrow{EC}\Rightarrow\left\{{}\begin{matrix}x+3=2\left(1-x\right)\\y-6=2\left(-2-y\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{1}{3}\\y=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow E\left(-\frac{1}{3};\frac{2}{3}\right)\)

19 tháng 7 2018

Đáp án A

10 tháng 11 2019

a/ Để chứng minh A,B,C là 3 đỉnh của tam giác cần chứng minh

\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\)

Thật vậy: \(\left(x_B-x_A;y_B-y_A\right)+\left(x_C-x_B;y_C-y_B\right)=\left(x_C-x_A;y_C-y_A\right)\)

\(\Leftrightarrow\left(-3-6;6-3\right)+\left(1+3;-2-6\right)=\left(1-6;-2-3\right)\)

\(\Leftrightarrow\left(-5;-5\right)=\left(-5;-5\right)\)

Vậy ...

b/ Để A,B,D thẳng hàng<=> \(\overrightarrow{AB}=x\overrightarrow{AD}\)

Vì D nằm trên trục hoành nên yD= 0

\(\Leftrightarrow\left(x_B-x_A;y_B-y_A\right)=x\left(x_D-x_A;y_D-y_A\right)\)

\(\Leftrightarrow\left(-9;3\right)=x\left(x_D-6;y_D-3\right)\)

\(\left\{{}\begin{matrix}x\left(x_D-6\right)=-9\\-3x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x_D=9+6=15\end{matrix}\right.\)

\(\Rightarrow D\left(15;0\right)\)

c/ \(E\in BC\Rightarrow\overrightarrow{BE}=2\overrightarrow{EC}\)

\(\Leftrightarrow\left(x_E-x_B;y_E-y_B\right)=2\left(x_C-x_E;y_C-y_E\right)\)

\(\Leftrightarrow\left(x_E+3;y_E-6\right)=2\left(1-x_E;-2-y_E\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3+x_E=2-2x_E\\y_E-6=-4-2y_E\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_E=-\frac{1}{3}\\y_E=\frac{2}{3}\end{matrix}\right.\Rightarrow E\left(-\frac{1}{3};\frac{2}{3}\right)\)

d/ Gọi pt đt DE có dạng: \(\left(d_1\right)y=ax+b\)

\(D,E\in\left(d_1\right)\Rightarrow\left\{{}\begin{matrix}15a+b=0\\-\frac{1}{3}a+b=\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{1}{23}\\b=\frac{15}{23}\end{matrix}\right.\)

\(\Rightarrow\left(d_1\right)y=-\frac{1}{23}x+\frac{15}{23}\)

Gọi pt đt AC có dạng: \(\left(d_2\right)y=ax+b\)

\(A,C\in\left(d_2\right)\Rightarrow\left\{{}\begin{matrix}6a+b=3\\a+b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-3\end{matrix}\right.\)

\(\Rightarrow\left(d_2\right)y=x-3\)

Bạn tự xét PTHĐGĐ của (d1) và (d2)

10 tháng 11 2019

Cảm ơn cậu nhé!

NV
21 tháng 3 2021

Hình chữ nhật ADN gì bạn nhỉ?

Hình chữ nhật phải có 4 đỉnh

E trên trục hoành nên E(x;0)

A(6;3); B(-3;6); E(x;0)

\(\overrightarrow{AB}=\left(-9;3\right);\overrightarrow{AE}=\left(x-6;-3\right)\)

Để A,B,E thẳng hàng thì \(\dfrac{x-6}{-9}=\dfrac{-3}{3}=-1\)

=>x-6=9

=>x=15

Vậy: E(15;0)

NV
4 tháng 1

Do E thuộc trục hoành nên tọa độ có dạng \(E\left(x;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-9;3\right)\\\overrightarrow{AE}=\left(x-6;-3\right)\end{matrix}\right.\)

3 điểm A, B, E thẳng hàng khi:

\(\dfrac{x-6}{-9}=\dfrac{-3}{3}\Rightarrow x-6=9\)

\(\Rightarrow x=15\Rightarrow E\left(15;0\right)\)

15 tháng 7 2016

 Nối BM cắt AC tại N,ta chứng minh được BM vuông góc AC và BM=AC .tìm được N,tỷ lệ AN/AC=1/5.NM/BM=3/5 => 3AN=MN.tìm đc A,có các tỷ lệ lúc nãy tìm đc B,C.

Mình tính được : A(3;-3).B(1;-3).C(1;1)

a: A(2;4); B(1;0); C(2;2)

vecto AB=(-1;-4)

vecto DC=(2-x;2-y)

Vì ABCD là hình bình hành nên vecto AB=vecto DC

=>2-x=-1 và 2-y=-4

=>x=3 và y=6

c: N đối xứng B qua C

=>x+1=4 và y+0=4

=>x=3 và y=4

8 tháng 3 2018

Chọn D.

Gọi điểm M có tọa độ là ( x; y)

MA2 + 2MB2 + 3MC2

= (x - 1)2 + (y - 4)2 + 2[ (x + 2)2 + (y + 2)2] + 3[ (x - 4)2 + (y - 2)2]

= 6x2-18x + 6y2 + 93 = 1,5. (2x - 3)2 + 6(y - 1)2 + 147/2 ≥ 147/2

Dấu “=” xảy ra khi x = 1,5 và y = 1

Vậy tọa độ điểm M cần tìm là ( 1,5; 1).