K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2022

undefined

AB=căn (3-0)^2+(4-4)^2=3

AC=căn 3^2+4^2=5

BC=căn (3-3)^2+(0-4)^2=4

AC^2=AB^2+BC^2

=>ΔABC vuông tại B

=>R=AC/2=2,5

17 tháng 7 2018

Gọi I(x, y). Ta có  A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .

Do I là tâm đường tròn ngoại tiếp tam giác ABC nên:

  I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2

⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 = x − 2 2 + 9 y = 1 ⇔ x = − 1 4 y = 1 .

Chọn B.

11 tháng 9 2019

Gọi I(a; b) là tâm đường tròn ngoại tiếp tam giác ABC.

A I 2 = B I 2 A I 2 = C I 2 ⇔ a − 0 2 + b − 2 2 = a + 2 2 + b − 8 2 a − 0 2 + b − 2 2 = a + 3 2 + b − 1 2

⇔ a 2 + b 2 − 4 b + 4 = a 2 + 4 a + 4 + b 2 − 16 b + 64 a 2 + b 2 − 4 b + 4 = a 2 + 6 a + 9 + b 2 − 2 b + 1

4 a − 12 b = − 64 6 a + 2 b = − 6 ⇔ a − 3 b = − 16 3 a + b = − 3

⇔ a = − 5 2 b = 9 2

Chọn B.

18 tháng 10 2017

Gọi I( x; y). Ta có  A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .

Do I là tâm đường tròn ngoại tiếp tam giác ABC nên  I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2

⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 y − 4 2 = y + 2 2 ⇔ x + 4 2 = x − 2 2 + ( 1 − 4 ) 2 y = 1 ⇔ x 2 + ​ 8 x + 16 = x 2 − 4 x + 4 + ​ 9 y = 1 ⇔ x = − 1 4 y = 1 .

Chọn B.

7 tháng 4 2016

B A D D C H K M I

Ta có \(HK\perp BC,K\in BC;\overrightarrow{HK}=\left(0;-2\right)\Rightarrow y-1=0\)

Gọi M là trung điểm của BC ta có phương trình \(x+3=0;M=IM\cap BC\Rightarrow M\left(-3;1\right)\)

Gọi D là điểm đối xứng của A qua I chỉ ra BHCD là hình bình hành. Khi đó M là trung điểm của HD, suy ra D(-5;-1).

I là trung điểm của AD, suy ra A(-1;7)

\(AI=\sqrt{20}\), phương trình đường tròn ngoại tiếp tam giác ABC là : \(\left(x+3\right)^2+\left(y-3\right)^2=20\)

Tọa độ điểm B, C là nghiệm của hệ phương trình :

\(\begin{cases}y-1=0\\\left(x+3\right)^2+\left(y-3\right)^2=20\end{cases}\)\(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\) hoặc \(\begin{cases}x=-7\\y=1\end{cases}\)

Vậy ta có \(B\left(1;1\right),C\left(-7;1\right)\) hoặc \(B\left(-7;1\right),C\left(1;1\right)\)

Suy ra \(A\left(-1;7\right);B\left(1;1\right),C\left(-7;1\right)\)

   hoặc\(A\left(-1;7\right);B\left(-7;1\right),C\left(1;1\right)\)