K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

mik moi lop 6 thoi

28 tháng 2 2016

mk  chưa hk

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. Câu 4: (4,0 điểm)Cho đường tròn (O; R) và hai...
Đọc tiếp

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).
a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.
b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. 
Câu 4: (4,0 điểm)
Cho đường tròn (O; R) và hai đường kính phân biệt AB và CD sao cho tiếp tuyến tại A của đường tròn (O; R) cắt các đường thẳng BC và BD lần lượt tại hai điểm E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.
a) Chứng minh rằng trực tâm H của tam giác BPQ là trung điểm của đoạn thẳng OA.
b) Hai đường kính AB và CD có vị trí tương đối như thế nào thì tam giác BPQ có diện tích nhỏ nhất.
Câu 5: (2,0 điểm) Cho a, b, c là các độ dài ba cạnh của một tam giác và thỏa hệ thức a+b+c=1. Chứng minh rằng a2+b2+c2<12.

0
6 tháng 6 2017

Đáp án A

a) Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{x^2}{2}=mx-m+2\)

\(\Leftrightarrow\dfrac{1}{2}x^2-mx+m-2=0\)

\(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-2\right)=m^2-2m+4>0\forall m\)

Do đó: (P) và (d) luôn cắt nhau tại hai điểm phân biệt(Đpcm)

Cho hàm số y = -x² có đổ thị là parabol (P). a) Vẽ parabol (P) trên mặt phẳng tọa độ; b) Viết phương trinh đường thẳng (d), biết rằng (d) cắt parabol (P) tại điểm có hoành độ bằng 2 và cắt trục tung tại điểm có tung độ bằng 1. c) Hãy tìm góc tạo bởi đường thẳng (d) vừa xác định ở câu b) và trục Ox (làm tròn đến độ). Câu 3: (2,0 điểm) Cho phương trình ẩn x, tham số m: x² + (m- 1)x-m 0...
Đọc tiếp

Cho hàm số y = -x² có đổ thị là parabol (P). a) Vẽ parabol (P) trên mặt phẳng tọa độ; b) Viết phương trinh đường thẳng (d), biết rằng (d) cắt parabol (P) tại điểm có hoành độ bằng 2 và cắt trục tung tại điểm có tung độ bằng 1. c) Hãy tìm góc tạo bởi đường thẳng (d) vừa xác định ở câu b) và trục Ox (làm tròn đến độ). Câu 3: (2,0 điểm) Cho phương trình ẩn x, tham số m: x² + (m- 1)x-m 0 a) Chứng minh phương trình luôn có nghiệm với mọi m; b) Tim m để phương trình có hai nghiệm x, X2; X < X2 sao cho x - 2x = -2. Câu 4: (2,0 điểm) Cho đường tròn (0; 6cm) và A là điểm nằm ngoài đường tròn (0) sao cho OA = 10cm. Qua A về các tiếp tuyến AB, AC với đường tròn (0) (B,C là các tiếp điểm); AO cắt BC tại H. a) Chứng minh tứ giác OBAC nội tiếp được; b) Tính độ dài đoạn thẳng BH; c) Vẽ đường kính BD của đường tròn (0). Chứng minh CD I OA

0
16 tháng 3 2019

\(a,M\in\left(d\right)\Rightarrow a.0+b.2=-2\)

                      \(\Rightarrow b=-1\)

\(\Rightarrow\left(d\right)ax-y=-2\)

\(\Rightarrow\left(d\right)y=ax+2\)

Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình

\(\frac{x^2}{4}=ax+2\)

\(\Leftrightarrow x^2-4ax-8=0\)(1)

Có \(\Delta'=4a^2+8>0\)

Nên pt (1) luôn có 2 nghiệm phân biệt 

=> (d) luôn cắt (P) tại 2 điểm phân biệt A và B

b, Gọi 2 điểm A và B có tọa độ là \(A\left(x_1;y_1\right);B\left(x_2;y_2\right)\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=4a\\x_1x_2=-8\end{cases}}\)

Vì \(A;B\in\left(P\right)\Rightarrow\hept{\begin{cases}y_1=\frac{x_1^2}{4}\\y_2=\frac{x_2^2}{4}\end{cases}}\)

Ta có \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)

                \(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\left(y_1+y_2\right)^2-4y_1y_2}\)

               \(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\left(\frac{x_1^2+x_2^2}{4}\right)^2-4.\frac{x_1^2x_2^2}{4.4}}\)

              \(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\frac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{4}-\frac{x_1^2x_2^2}{4}}\)

               \(=\sqrt{16a^2+32+\frac{\left(16a^2+16\right)^2}{4}-\frac{64}{4}}\)

             \(\ge\sqrt{16.0+32+\frac{\left(16.0+16\right)^2}{4}-\frac{64}{4}}=4\sqrt{5}\)

Dấu "=" <=> a = 0