Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy d và d' không song song với nhau.
Do đó trục đối xứng Δ của phép đối xứng biến d thành d' chính là đường phân giác của góc tạo bởi d và d'.
Từ đó suy ra Δ có phương trình:
Từ đó tìm được hai phép đối xứng qua các trục:
Δ 1 có phương trình: x + y – 5 = 0,
Δ 2 có phương trình: x – y – 1 = 0.
Nhận xét d và d’ không song song nên phép đối xứng trục biến d thành d’ có trục là phân giác của góc tạo bởi d và d’. Phương trình các đường phân giác là:
Dễ thấy d và d' không song song với nhau. Do đó trục đối xứng \(\Delta\) của phép đối xứng biến d thành d' chính là đường phân giác của góc tạo bởi d và d'. Từ đó suy ra \(\Delta\) có phương trình :
a) d 1 : 3x + 2y + 6 = 0
b) Giao của d và Δ là A(2;0). Lấy B(0; −3) thuộc d. Ảnh của B qua phép đối xứng của đường thẳng Δ là B′(5;2). Khi đó d' chính là đường thẳng AB′: 2x − 3y – 4 = 0
Gọi M(x; y) tùy ý thuộc d, suy ra 3x – y + 2 = 0 (1)
Gọi M’(x’; y’) = ĐOy(M) ⇔
Thay vào (1), ta được : 3(-x’) – y’ + 2 = 0 ⇔ 3x’ + y’ – 2 = 0
Do đó, điểm M’ thuộc đường thẳng d’ : 3x + y – 2 = 0.
Vậy qua phép đối xứng trục Oy biến đường thẳng d thành đường thẳng d’: 3x + y- 2=0
Đáp án C
x ' = − x y ' = y => – 4x + y – 7 = 0 => 4x – y + 7 = 0