K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

- Chọn 3 điểm trong 18 điểm đã cho làm 3 đỉnh của một tam giác. Mỗi tam giác là một tổ hợp chập 3 của 18. Vì vậy số tam giác là C183 (chọn phương án B)

2 tháng 1 2020

Chọn A

Ta chọn bất kì 3 điểm trong 18 điểm đã cho thì tạo thành một tam giác.

Do đó số tam giác được tạo thành là số cách chọn 3 điểm phân biệt bất kỳ (không kể thứ tự) từ 18 điểm đã cho.

Vậy có tất  C 18 3  tam giác.   

3 tháng 4 2017

Mỗi tập con gồm 3 điểm (không phân biệt thứ tự) của tập hợp 6 điểm đã cho xác định duy nhất một tam giác. Từ đó ta có: số tam giác có thể lập được (từ 6 điểm đã cho) là:

C36 = = 20 (tam giác)


30 tháng 5 2018

Cứ chọn 3 điểm không thẳng hàng bất kì ta được một tam giác.

Việc lập các tam giác chính là chọn 3 điểm trong tập hợp 6 điểm đã cho và chính là tổ hợp chập 3 của 6.

Vậy có: 

Giải bài 6 trang 55 sgk Đại số 11 | Để học tốt Toán 11 cách lập.

25 tháng 3 2019

Đáp án là B

Cứ 3 điểm phân biệt không thẳng hàng tạo thành một tam giác.

Lấy 3 điểm bất kỳ trong 6 điểm phân biệt thì số tam giác cần tìm chính là một tổ hợp chập 3 của 6 phần tử (điểm).

Như vậy, ta có C 6 3 = 20  tam giác.

2 tháng 7 2019

Nhận xét: học sinh có thể nhầm cho rằng mỗi tam giác là một chỉnh hợp chập 3 của 18, nên số tam giác là A183 (phương án A); hoặc suy luận một tam giác có 3 đỉnh nên 18 điểm cho ta 18/3 = 6 tam giác (phương án C); hoặc suy luận 18 điểm có 18! Cách và mỗi tam giác có 3 đỉnh nên số tam giác là 18!/3 cách (phương án D)

- Do 

nên mỗi vecto là một chỉnh hợp chập hai của 18.

Vì vậy, số vecto là A182 (chọn đáp án là A)

9 tháng 5 2017

Đáp án C

Số tam giác có 3 đỉnh đều thuộc P là  C 10 3

11 tháng 12 2018

Chọn B

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Mặt phẳng đi qua ba điểm A, B, C đi qua đường thẳng d

b) Có một và chỉ một mặt phẳng đi qua điểm A và đường thẳng d

23 tháng 12 2021

Chọn 3 điểm trong 15 điểm có: \(C^3_{15}\)(cách chọn)

Chọn 3 điểm trong 6 điểm thẳng hàng có:\(C^3_6\)(cách)
=>Số tam giác được tạo thành từ 15 điểm đã cho là: \(C^3_{15}-C^3_6\)(tam giác)