Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: tam giác chứa điểm O: 2 điểm còn lại 1 điểm phải được chọn từ a và 1 điểm được chọn từ b \(\Rightarrow8.10\) tam giác
TH2: tam giác không chứa điểm O \(\Rightarrow\) tam giác đó có 2 đỉnh thuộc a và 1 đỉnh thuộc b hoặc 1 đỉnh thuộc a, 2 đỉnh thuộc b \(\Rightarrow C_8^2.C_{10}^1+C_8^1.C_{10}^2\) tam giác
Tổng cộng: \(8.10+C_8^2.C_{10}^1+C_8^1.C_{10}^2=...\)
Đáp án D
Dễ có số cách chọn 3 điểm từ 11 điểm đã cho là : C 11 3 = 165
Để 3 điểm được chọn tạo thành một tam giác thì phải thỏa mãn 3 điểm đó không thẳng hàng. Do đó có hai trường hợp xảy ra :
- Thứ nhất có hai điểm trên đường thẳng a và một điểm trên đường thẳng b
- Thứ hai có một điểm trên đường thẳng a và hai điểm trên đường thẳng b
Từ đây suy ra số cách chọn 3 điểm để tạo thành một tam giác là : C 6 2 C 5 1 + C 6 1 C 5 2 = 135
Vậy xác suất cần tìm là 135 165 = 9 11 . => Chọn đáp án D.
Số tam giác lập được thuộc vào một trong hai loại sau
Loại 1: Gồm hai đỉnh thuộc vào a và một đỉnh thuộc vào b
Số cách chọn bộ hai điểm trong 10 thuộc a:
Số cách chọn một điểm trong 15 điểm thuộc b:
Loại này có: tam giác.
Loại 2: Gồm một đỉnh thuộc vào a và hai đỉnh thuộc vào b
Số cách chọn một điểm trong 10 thuộc a:
Số cách chọn bộ hai điểm trong 15 điểm thuộc b:
Loại này có:
Vậy có tất cả: tam giác thỏa yêu cầu bài toán
Chọn C.
"Một số lẻ chữ số 1 và 1 số chẵn chữ số 2" nghĩa là sao nhỉ?
Bạn có thể ghi 1 cách chính xác tuyệt đối đề bài không?
Đáp án D
Chon 3 số bất kì có C 10 3 = 120 cách
TH1: 3 số chọn ra là 3 số tự nhiên liên tiếp có 8 cách
TH2: 3 số chọn ra là 2 số tự nhiên liên tiếp
+) 3 số chọn ra có cặp (1;2) hoặc (9;10) có 2.7 = 14 cách
+) 3 số chọn ra có cặp ( 2 ; 3 ) ; ( 3 ; 4 ) ; . . . . ( 8 ; 9 ) có 6.6 = 36 cách
Vậy xác suất cần tìm là
Tham khảo:
a)
Góc lượng giác \(\left( {OA;OB} \right) = 90^\circ = \frac{\pi }{2}\)
b)
Biến cố A : "ba điểm tạo thành tam giác", tức là ba điểm không thẳng hàng.
Có 2 trường hợp:
- Hai điểm thuộc a và một điểm thuộc b có C 6 2 . C 5 1 cách
- Hai điểm thuộc b và một điểm thuộc a có C 6 1 . C 5 2 cách
Suy ra,số phần tử của biến cố A là:
Ω A = C 6 2 . C 5 1 + C 6 1 . C 5 2 = 135
Đáp án A.
Chọn B
· Bổ đề: Trong mặt phẳng cho hai tia Ox và Oy vuông góc với nhau tại gốc O. Trên tia Ox lấy 10 điểm A 1 , A 2 , . . . , A 10 và trên tia Oy lấy 10 điểm B 1 , B 2 , . . . . , B 10 thỏa mãn O A 1 = A 1 A 2 = . . . = A 9 A 10 = O B 1 = B 1 B 2 = . . . . = B 9 B 10 = 1 (đvd).
Tìm số tam giác có 2 đỉnh nằm trong 10 điểm 1 đỉnh nằm trong 10 điểm B 1 , B 2 , . . . . , B 10 sao cho tam giác chọn được có đường tròn ngoại tiếp, tiếp xúc với một trong hai trục Ox hoặc Oy?
Giải: Gọi là 3 đỉnh của tam giác thỏa yêu cầu bài toán với
Ta có
Do đường tròn luôn cắt Ox tại phân biệt nên đường tròn chỉ có thể tiếp xúc với Oy tại B p ta có phương tích
Do nên dễ thấy
hay nói cách khác bộ ba (m,n,p)
Vậy có 4 tam giác thỏa mãn yêu cầu bổ đề.
· Bài toán: Không gian mẫu
Gọi A là biến cố chọn được tam giác có đường tròn ngoại tiếp tiếp xúc với một trong hai trục Ox hoặc Oy. Theo bổ đề ta chọn được 4 tam giác có 2 đỉnh thuộc tia Ox, 1 đỉnh thuộc tia Oy; tương tự có 4 tam giác có 1 đỉnh thuộc tia Oy, đỉnh thuộc tia . Suy ra, n(A) = 8
Xác suất biến cố A là